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Abstract 
Combating the covid19 scourge is a prime concern for the human race today. Rapid 
diagnosis is critical to identify the infection accurately. Due to the prevalence of 
public health crisis, reaction-based blood tests are the customary approach for 
identifying covid19. As a result, scientists are analyzing screening methods like deep 
layered machine learning on chest radiographs. Despite their usefulness, these 
approaches have large computational costs, rendering them unworkable in practice. 
This study's main goal is to establish an accurate yet efficient method for predicting 
SARS-CoV-2 infection (Severe Acute Respiratory Syndrome CoronaVirus 2) using 
chest radiography pictures. We utilized and enhanced the graph-based family of 
neural networks to achieve the stated goal. The IsoCore algorithm is trained on a 
collection of X-ray images separated into four categories: healthy, Covid19, viral 
pneumonia, and bacterial pneumonia. The IsoCore model has 5 to 10 times fewer 
parameters than the other tested designs. It attains an overall accuracy of 99.79%. 
We believe the acquired results are the most ideal in the deep inference domain at 
this time. This proposed model might be employed by doctors via phones. 
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1. Introduction 

The Sars Cov2 pathogen is responsible for the covid19 infection, which may induce flu-like 
symptoms before advancing to a respiratory disorder. The graveness of the disease prompted 
a worldwide public health campaign to curb the advancement of the virus by detecting it early 
(A. H. AU Davarpanah et al. 2020). An efficient and conclusive distinction of covid19 can be 
made by using reactionary blood testing methods like the polymerase tests. However, such 
tests are time consuming and sensitive to the environment leading to high chances of 
incorrect diagnosis. Factors such as inadequate cell material in the sample or improper 
filtration methods are observed to interact with these tests (J. d. A. B. Araujo-Filho et al. 2020). 
Consequently, numerous negative tests are required to conclude the absence of COVID-19 
infection in a person, which may lead to a scarcity of test kits (A. C. of Radiology et al. 2020). 
Chest X-Rays (CXR) are becoming more important as COVID-19 spreads across the globe (P. 
Huang et al. 2020; T. Ai et al. 2020; M. Y. Ng et al. 2020). An extensive body of evidence proves 
the ability of deep layered automatic learning networks to predict existence of covid19 by 
utilizing chest X-rays of patients. To properly identify covid19 infection, radiographic 
competence is essential to understand the nitty-gritties. As a result of the lack of expert 
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radiologists pertaining to the chest region, particularly in developing countries, it is difficult to 
provide accurate interpretations of complicated chest exams. Techniques deeply influenced 
by the brain's anatomy like the artificial neural networks promotes the detection of primary 
patterns. Experimentation with neural networks especially, convolving networks have shown 
superior performance in many processing applications (Y. LeCun et al. 2015; H. Touvron et al. 
2019; P. Rajpurkar et al. 2017), thus making deep learning methods an appropriate choice for 
the processing of x-rays. Pneumonia along with other illnesses have previously been detected 
and classified using deep learning (P. Rajpurkar et al. 2017; X. Wang et al. 2017; A. K. Jaiswal 
et al. 2019). Deep layered architectures possess substantive potential for identifying hidden 
minuscule infected regions from lung X-rays pictures. Low computational cost models are in 
demand because they enable the usage of input pictures with significantly greater resolutions 
without increasing processing time. Graph Neural Network (GNN) (Scarselli F. et al. 2009) is 
among the inference models that are friendly for developing lite applications with low 
hardware resource utilization thus making it compatible with different smart phone systems. 
This goal necessitates that the models have a small footprint and fast inference time, which 
means that they can be incorporated with smart devices extensively, thereby allowing it to be 
used seamlessly by individuals and also at hospitals. Moreover, GNN also deals with the 
overfitting and class imbalance problem which is difficult to attain with Convolutional 
networks. Experimental findings in other domain show that GNN-based models are typically 
fast (Mondal R. et al. 2019). Multi layered deep architectures like GNN are renowned for 
solving graph categorization challenges. As a result, the graph data structure is required for 
GNN input data. On the other hand, the input to every 2D-CNN (Two Dimensional - 
Convolution Neural Metwork) model is just a 2D picture matrix. A good method is needed to 
transfer picture classification to a graph classification. In order to turn a picture into graph 
data, we used an appropriate pre-processing approach. For this reason, we have built our 
suggested IsoCore (a Graph Isomorphic Network – GIN (Xu K. et al. 2018)  based model) named 
IsoCore, which is a specific category of GNN. 

Experimental data shows that our suggested model works very well in terms of time consumed 
by the model. Because of the one-to-one mapping characteristic of the aggregate 
functionality, our design has also performed well in datasets with a large class imbalance. The 
design is able to appropriately transfer various graphs into various embedding space 
representations. As a result, the suggested model is capable of accurately classifying images 
with a lower count. A total of four publicly accessible datasets were used into our analysis: the 
SARS Cov2 CT-scan dataset (Soares E. et al. 2020), the covid19 CT-scan dataset (Yang X. et al. 
2003), the datasets from CMS-678-ML-Proj. (Jamdade V. et al. 2020) (3-4 class), and a mixture 
of the two datasets i.e., covid19 chest x-ray dataset accessible on Github (Cohen et al. 2020), 
and the pneumonia dataset of x-rays from Kaggle (Mooney P et al. 2018).  

There are six parts to the rest of this article. In the next section, we'll look at some relevant 
literature. Section 3 explains the approach and dataset. Section 4, lays forth the proposed 
system i.e, Isocore model. An extensive collection of computational experiments is discussed 
in Section 5. Ideas for further study and conclusion are discussed in the final section. 

2. Related Literature 

In (E. E. D. Hemdan et al. 2020), a comparative study of seven renowned and conventional 
multi layered deep neural architectures was published to address Covid19. With just 50 photos 
belonging to normal category and covid19 infected individuals to work with, the researchers 
conducted their studies with a tiny dataset. Pre-trained models used the ImageNet dataset (a 
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collection of radiographic images), which contained above 12 million pictures was trained. The 
VGG19 (K. Simonyan et al. 2019) (Visual Geometry Group19) and DenseNET201 (Y. Huang et 
al. 2019) designs performed the best in their tests. 

CXR pictures are classified in (L. Wang et al. 2003) belonging to 3 classes: healthy, pneumonia-
viral, and Covid19 are classified using a novel CNN architecture called COVID-net. There are 
182 covid19 patients and over 13 thousand X-ray scans belong to healthy cases The total 
quantity of residing images in the data is just below 13 thousand, which is much greater than 
the prior study's dataset. For Covid19 detection, the researchers claim an overall accurate rate 
of 92.4% and the model's ability to identify the covid19 infection was 89.50%. For the four-
categorization issue of radiographic chest dataset divided into healthy, covid19, pneumonia-
bacterial, and pneumonia-viral pneumonia, the ResNet50 (Elaziz M. A. et al. 2020) is fine-
tuned in (M. Farooq et al. 2003). Compared to COVID-net model, this architecture 
accomplished an astounding 97.10 percent on comprehensive accuracy and was proved to be 
100% sensitive in detecting the covid19 infection. Although (M. Farooq et al. 2003) includes 
an additional class, it is vital to point out that the dataset it uses is a subset of [19's dataset]. 
Radiographs of 68 Covid19 infected cases, around twelve hundred normal images, over nine 
hundred pneumonia-bacterial scans and over 650 patients with no Covid19 but showing 
patterns of pneumonia- viral are included in the dataset in (M. Farooq et al. 2003). 

They also used hierarchical analysis for COVID-19 pattern detection on CXR (Chest Xray) 
images (R. M. Pereira et al. 2022). Datasets from various public datasets were combined to 
create one with 1,144 X-ray pictures. Only 90% of the photos belonged to the COVID-19 
classification, with the rest belonging to five distinct forms of pneumonitis along with a normal 
ordinary category. A deep convolutional network approach was one of several tools utilized 
to extract information from the photos (Inception-V3 (C. Szegedy et al. 2016)). To classify data, 
the authors looked at classifiers of the likes of support vectors, supervised random forests, K 
nearest neighbors, multi layered neurons, and decision-making using trees, among other 
options. The COVID-19 class's F1-Score is reported to be 0.89. In spite of the significant 
connection to the current study, we note that a head-on comparative analysis is not feasible 
because of the distinct nature of data utilized in both the studies.  

An algorithm known as CoroNet, developed by the authors in (A. I. Khan et al. 2020), 
automates the identification of corona infection from x-rays. (F. Chollet et al. 2017) This 
particular network is built and used to process the ImageNet datastore using the Xception 
CNN architecture (J. Deng et al. 2009). There are two public image datasets (covid19 chest x-
rays kaggle pneumonia viral chest x-rays) from which CoroNet was trained and tested. With a 
four-layered cross-validation technique, CoroNet architecture obtained an accuracy of 89.7 
percent for covid19 cases, supporting precision and recall rates of 92.98 percent and 97.90 
percent for four categories (covid19 bacterial versus Pneumonitis viral vs healthy). In addition, 
the authors tested the model in question, with yet another dataset, even when the dataset 
seems to include the previously used covid19 pictures for processing. 

3. Materials and Methods 

In this part, the datasets employed are discussed in detail. The foundational approach based 
on Isomorphic Networks is further explained in this section. 

3.1. Dataset description 

The research in this paper was carried out using the four datasets listed below. 

1. The "covid19 ct-scan data" (Soares E. et al. 2020), developed and maintained on a data 
platform named kaggle.31 
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2. Yang et al., "SARS cov2 dataset," a 2-category dataset available on Kaggle. (Yang X. et al. 
2003) 

3. Three-class chest X-ray pictures used from two distinct repositories 

i. "Covid19-chestxray-dataset", (Cohen et al. 2020), present on a source control 
management platform, named Github. 

ii. Radiographic pictures of the lungs (pneumonia) collected by Mooney and colleagues in 
the "Covid-chestxray-dataset," (Mooney P et al. 2018) 

4. CXR datasets for three and four classes of the "CMSC 678 ML Project" are available on 
GitHub (Jamdade V. et al. 2020). 

All the datasets have two classes in common i.e., COVID19 and normal, whereas one dataset 
(Covid19-Chest-X-ray-dataset) has an additional Pneumonia class. The CMSC-678-ML Project's 
four-class dataset categorizes pneumonia into two subcategories: bacterial and viral. The 
Computed tomographic and radiographic pictures of the chest are shown in (Figure 1). (Table 
1) displays the characteristics of each of these collections. (Figure 1) depicts sample images 
from the datasets used as input to the model. 

 
Figure 1: Sample CXR images and CT scans from the dataset. 

Dataset Used No. of 
classes 

Image 
type 

Total images 

Healthy Covid19 Pneumonia 

Covid19-CT-data 2 CT 407 348 - 

SARS-Cov2-CT-data 2 CT 1229 1252 - 

Covid19 + Pneumonia-
Chest-X-ray-data 

3 CXR 1593 503 4343 

 
CMS_678_ML-Proj. data 

3 CXR 79 69 79 

4  
CXR 

79 69 Viral-79, 
Bacterial-79 

Table 1: Quantitative overview of all experimental datasets. 

3.2. Input Preprocessing  

The Image cleaning, noise reduction, outlier removal, and other pre-processing procedures 
are all possible options to keep your images clean and clear. Pre-processing for the IsoCore 
model is limited to edge-tracking and graph-construction. 
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Figure 2: Edge-tracking using different image-filtering techniques 

A. Edge-tracking: If an image's edge indicates where the intensity changes locally, then 
the image's edge area will have a local maximum value or a minimum value in terms 
of intensity change. In order to make the edges stand out, the source picture must be 
processed properly. For both horizontal and vertical edge detection, we used a 3*3 
Prewitt filter (Prewitt et al. 1970) to concatenate the original picture matrix. Because 
it is simple to construct and finds edges relatively efficiently (Priyam P. et al. 2016), we 
have chosen the Prewitt operator for this experiment. Canny, Sobel, and Prewitt are 
illustrated in (Figure 2) as a comparison of the three most common edge filters. (Figure 
2) shows that the picture produced by the Sobel filter is the noisiest, while the image 
produced by the Canny filter is the least noisy. Prewitt produces a noisier picture than 
Canny, but unlike Canny, all edges of the image have varying pixel intensities. For 
Prewitt filter, it would be better to use pixel values as a feature. 

 
Figure 3: Edge-tracking process. 
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The gradient of each 3x3 sub-matrix has been calculated after convolution with both 
horizontal and vertical filters. All pictures are rendered in black and white, hence we assumed 
that each pixel in an edge had to be more than or equal to 128 in gradient magnitude for it to 
be called an edge. (Figure 3) provides a clearer picture of the edge-tracking procedure. 

B. Graph-construction: Using the necessary procedures, the edge maps are turned into a 
graph dataset. Using the Prewitt filter (Prewitt et al. 1970), each image is turned into 
a graph. a Preparation of the graphs involves the following three steps: 

1. Grayscale intensity values are greater than or equal to 128 for nodes and vertex 
points. Nodes appear to be restricted to the most visible edges of the edge picture, 
based on this finding. The feature of a node is the pixel's grayscale intensity. 

2. Every unit from the original picture correlates to an exact neighboring vertex. 

3. Every one of the photos are accompanied by a corresponding graph. In other words, 
all of the nodes and edges created from a single image are all part of the same 
network.  

Only grayscale values are used for graph-based normalization of node attributes. The next 
step is to normalize the data by subtracting the original value from the average of all variables 
presented on an undirected graph and dividing the result by the standard 
deviation.  Preparation of such data requires less memory since nodes are created just from 
edges present in a picture, rather than the complete picture. For Pneumonia scans like 
COVID19, the margins of the graph and the structure of the graph will be changed because of 
a cloudy region for coughing. This discrepancy in classification may prove useful at a later time. 
We constructed five datasets to constitute the equivalent graphical data from all filters: 

1. The node-set contains the values of each node attribute (here, the normalized gray-
scale intensity). 

2. The graph-data-id comprises a collection of the node IDs. 

3. Set-of-node-labels contains the class label information for every single node. The nodes 
in the same graph will have the same label because this classification is at the graph level, in 
actuality it is the class label of the related graph. 

4. Each node in the same graph will have the same label because this classification is at 
the graph level, which is really the class label of the related graph. There is a class label for 
each graph in the graph-set. 

5. For all graphs, an Adjacency-Set is included. The adjacency sparse-matrices of all the 
graphs are kept here.  

(Figure 4) shows the whole graph construction process. 
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Figure 4: Graph construction process 

3.3. Graph Neural Network (GNN) and Graph Isomorphic Network (GIN) 

A. GNN: The collection of vertices V and edges E that make up a graph G may be used to 
characterize the graph. Graph neural network is an algorithm that works directly with the 
graph structure. Node categorization is a common use of GNN. Predicting the labels of 
nodes in the network without relying on any ground truth is the ultimate goal. Each node 
v is described by its characteristic x_v and paired with a ground-truth label t_v in the node 
classification problem setting. To forecast the labels of the unlabeled nodes in a partly 
labelled graph G, the objective is to use the labelled nodes. To represent each node, it 
builds a d-dimensional vector (state) h_v that includes data about its immediate 
surroundings. 

 
𝐻𝑣 =  𝑓(𝑥𝑣 , 𝑥𝑐𝑜[𝑣], ℎ𝑛𝑒[𝑣], 𝑥𝑛𝑒[𝑣]) (1) 

 

In (Formula 1), ℎ𝑛𝑒[𝑣] signifies the embedding of the nearby nodes of v, whereas 𝑥𝑛𝑒[𝑣] 

provides the characteristics of v's immediate neighbours. Inputs are transformed into d-
dimensional space using the transition function. Message forwarding or neighbourhood 
aggregation are two actions that are then performed. 

B. GIN: Graphs encountered in real-world applications are a mix of continuous and discrete 
structures (node and edge-features and connectedness, respectively). GNNs may be able 
to discriminate between various kinds of graph structures, according to one theory. The 
graph isomorphism issue, a classic in graph theory, asks whether two graphs are 
topologically similar. The sole difference between two isomorphic networks is the order in 
which their nodes are arranged. The graph isomorphism issue was thought to have a 
polynomial-time solution in the form of the Weisfeiler-Lehman (WL) test. Hashing is used 
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at each phase to create unique new-nodes from the nodes that have been aggregated from 
their neighbours. Upon obtaining node stability, the algorithm comes to an end. WL, on the 
other hand, was unable to tell the difference between basic graph configurations. In an 
attempt to produce neural networks comparable to the WL method, Xu developed Graph 
Isomorphism Networks, which comprised of aggregate and update functions. 

4. Proposed System 

GIN is utilized to train the model to recognize Covid19 from chest x-rays or ct-scans using an 
innovative approach called IsoCore. As a result, the embedding space for a graph in GNN is 
represented by the symbol hv, which is dimensioned by d. Embedded space places nodes that 
are connected to one another or that have common neighbors in close proximity. A feature 
vector-point fvec and a neighborhood embedding vector-point hnecv are used to determine the 
embedding vector-point hvec for each node. GNNs are used to learn a node's representation 
vector, which incorporates the graph's topology and the properties of its nodes. Nodes have 
their own neural network architecture (Scarselli F. et al. 2009) determined by the context in 
which they operate. This is seen in (Figure 5). 

 
Figure 5: Graph processing 

There is no restriction on the model length for each node. By continually updating the 
representation of each node, the knowledge about its near neighbors is constantly being 
added to its representation. All node's layers have their own unique embeddings. GNN's 
Aggregation algorithm iterations supply the kth layer of GNN with the following. 

 

 𝑎𝑣𝑒𝑐
𝑘 =  𝐴𝑔𝑔𝑟𝑒𝑔𝑎𝑡𝑒(𝑘)[ℎ 𝑢

(𝑘−1)
∶ 𝑢 𝜖 𝑁(𝑣𝑒𝑐)], 𝐶𝑜𝑚𝑏𝑖𝑛𝑒(𝑘) (ℎ 𝑣𝑒𝑐

(𝑘−1)
, 𝑎𝑣𝑒𝑐

𝑘 ) (2) 

 

In (Formula 2), ℎ𝑣
(𝑘) is the feature vector-point of node vec at the Kth level and ℎ𝑎

(𝑘)
 is the 

averaged-out message from its neighbors N(vec) is the name given to the group of nodes that 
surround vec. Graph Convolutionalized Networks (GCN) (Berg et al. 2017) use element basis 
mean pooling as opposed to aggregation and combination processes. 

A GINConv layer leverages Multi-Layer Perception in our design (MLP). The collection of 
neighborhood data will be handled by MLP in the future stages of our design. In the MLP, a 
second linearity layer follows linear rectified unit i.e., ReLU layer. The GIN convolutional MLP 
design is shown in (Figure 6) 
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Figure 6: Multi layered perceptron network 

The GIN convolutions accept two primary inputs.  

1. Vertices from the graph have dimensions V*dim, which is equal to the entire number of 
vertices in the graph multiplied by dim, which gives us an initial feature matrix, x. 

2. There are L vertices in the graph, with v1 and v2 connected by a single edge. The edge 
point E has a size of 2*L, and this is its dimension. 

Non-linearity is added to the GINConv layer's output after a dropout of 0.5 and a normalization 
(norm) layer are applied to the mini-batch of inputs. In another block, the output of another 
GINConv ReLU-drop-out-norm layer, out2, is supplied (out1). See (Figure 8). A global mean 
pooling layer is then placed on the cover of GINConv-ReLU-dropout layers that have been 
applied to this out2. After a 50% dropout rate, the next two layers have dropout rates that are 
half as high as the previous layer's dropout rate, and so on. Finally, it was decided to use a Log  

 
Figure 7: Proposed System i.e., The IsoCore model architecture 

SoftMax to construct the final probability vector (z). We used the negative log likelihood 
function to classify the data in this study. 

(Figure 7) shows a diagrammatic representation of the approach we proposed i.e., the Isocore 
model 
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Figure 8: Proposed System internal layering 

5. Results 

We utilized a five timed cross validation in our experiments to test the network's accuracy. 
There are ten training cycles for each fold. A Stochastic Gradient Descent (SGD) algorithm with 
a processing percentage of 0.01 was utilized to train our network, coupled with Adam's 
optimizer. According to established metrics, including Accuracy and the ROC curve, our model 
has performed well. (Table 2) depicts the results of our proposed IsoCore network 
performance along with the mean time spent on training and testing in each iteration for all 
four datasets. 

Name of data set Class Accuracy Training time in secs Testing time in secs 

Covid19-CT data 2 99.51 342.586 2.328 

SARS-Cov2-CT data 2 99.45 146.365 1.151 

Covid + Pneumonia Chest 
Xray data 

3 99.55 971.29 7.138 

 
CMS-678-ML-Proj. data 

3 99.84 66.923 0.6 

 4 99.79 73.697 0.612 

Table 2: Assessment measures 

For all datasets, the IsoCore model's accuracy is demonstrated in (Table 2)  to be at least 99%, 
with a maximum accuracy of 99.84% for the 3-class dataset. According to our model, as the 
quantity of classes grows, the efficiency of the model's predictions drops from 99.85% to 99%. 
To add to the impressiveness of our suggested model, it accurately identified 99.84% of the 
covid19 and Pneumonia database patients in a significantly class-unbalanced data collection 
of patients. It is intuitively obvious that GNNs may map two nodes to the same place if the 
respective nodes have similar sub branches possessing the same properties. Subtree 
structures are built recursively using node neighbors. All that has to be decided is whether or 
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not a GNN tracks two zones i.e., two multisets, to the same rendering or representation. GNNs 
cannot be used to map a single representation to numerous neighborhoods, or multiple sets 
of feature vectors. Injective aggregation is thus required. As a consequence, a sophisticated 
GNN aggregation approach can express injective multi-set functions. 

The proposed IsoCore model contains a GIN network that can transform any two unique 
graphs into a variety of embeddings in order to solve the difficult graph isomorphism problem. 
Non-isomorphic and non-isomorphic graphs must be represented in different ways when it 
comes to isomorphic graphs It is possible to use this strategy to datasets that have a significant 
degree of class imbalance due to the following reasons: For both training and testing, (Table 
2) data demonstrates that our proposed approach needs just 1–10 minutes. The fact that 
there are fewer epochs might potentially be a factor in the decreased training time. While this 
is true, as previously said, the initial loss of training is quite little. As a consequence, a large 
number of epochs is not required for training purposes. Fig. 9 shows that the training loss is 
rather small. 

 
Figure 9: Accuracy and loss 

First epoch results in 99.90% of datasets being properly recognized with a loss of only 0.3 per 
dataset, as seen in the graph. To top it all off, when the period size increases, the classification 
accuracy either remains the same or improves somewhat. However, as can be seen in (Figure 
9), accuracy seems to be constant due to the loss change being more apparent than the overall 
accuracy change. Because of appropriate pre-processing methods, the proposed network 
possesses the ability to completely comprehend the input graphs. Thus, training may be 
completed within 12 epochs, with a low initial loss. Each of the datasets portrayed in (Figure 
10) was processed through a renowned characteristics operator curve also known as the ROC 
curve so that we could verify the correctness of our classification model. There is a 11% 
discrepancy between the two levels of instruction and testing in our tests. As an added visual 
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aid, (Figure 11) displays the training and testing performance in terms of accuracy rate in 
relation to training to testing ratio for every dataset. 

Training data  Testing data Classes Accuracy Recall 

Covid19-CT-data SARS-Cov2-CT-data 2 99.51 99.42 

SARS-Cov2-CT-data Covid19-CT-data 2 99.45 99.40 

Covid + Pneumonia Chest X-
ray-data 

CMS-678-ML-Proj.data 3 99.55 99.38 

CMS-678-ML-Proj.data Covid + Pneumonia Chest X-
ray-data 

3 99.84 99.45 

Table 3: Model performance train-test figures, in detail, with respect to accuracy and recall 

 
Figure 10: ROC and AUC 

At least 96% of the samples are correctly predicted for all training-to-testing ratios in (Figure 
11), which demonstrates the robustness of the IsoCore model. Area covered under the arch 
for every one of the ROCs in (Figure 10) is at least 0.98 units, demonstrating that the classifier 
is competent. 

One can notice from their perfect ROC curves, the AUCs for both 2-class datasets are 0.990. 
With the IsoCore paradigm, any dataset of two classes may be handled. We conducted trials 
on datasets with the same quantity of categories for all training and testing process. Outcomes 
of all combinations of train and test are shown in (Table 3) 

Despite the fact that the training and testing images originate from two distinct sources, the 
suggested model's accuracy is over 99 percent, as shown in (Table 5). Using this information, 
IsoCore's credibility has been boosted significantly. Pre-trained CNN models like VGG19 
(Simonyan K. et al. 2014), ResNet152 (He K. et al. 2016), DenseNet201 (Huang G. et al. 2017), 
Xception (Szegedy C.et al. 2019), and MobileNetV2 (Chollet F. et al. 2017) have also been 
compared to our proposed model to ensure that it is superior to our model in both raw and 
filtered edge-mapped images. Accuracy (percent) is provided in (Table 4) based on the CNN 
models. 

(Tables 2) and (Table 5) indicate that IsoCore outperforms all of the typical CNN models, 
indicating the sturdiness of our model's construction. We've also compared our proposed 
IsoCore model's outputs to those of other research that employed the same datasets. The 
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results of these comparisons are shown in (Table 5). That our technique is more accurate than 
any of the other methods reviewed here is evident in (Table 5).  

 
Figure 11: Training and testing accuracy 

Our model, IsoCore, outperforms the previous ones, even though some of them were done 
on a different or even larger dataset. This dataset (Jamdade V. et al. 2020) has not been 
utilized in any previous study, to the extent of our knowledge. Very limited quantity of studies 
has looked at a 4-class covid19 classification database thus far.  

 
Existing models 

Covid + 
Pneumonia Chest 

Xray data 

CMS-678-ML-
Proj. (3 class 

data) 

CMS-678-ML-
Proj. (4 class 

data) 

SARS-Cov2-CT 
data 

Covid19-CT data 

Image 
Filter 
image 

Image 
Filter 
image 

Image 
Filter 
image 

Image 
Filter 
image 

Image 
Filter 
image 

Xception 96.74 99.22 82.61 86.96 82.15 83.97 83.30 81.79 82.01 87.58 

ResNet152 98.68 97.82 91.31 91.40 86.13 85.88 77.87 84.58 86.65 87.97 

Inception_ResN
et-V2 

98.22 98.05 82.61 91.3 77.56 86.45 77.85 80.08 74.35 78.95 

VGG19 98.45 96.50 86.96 97.83 79.65 92.2 78.27 82.55 79.60 84.27 

MobileNet-V2 98.76 98.52 93.48 84.74 81.45 82.25 77.46 80.48 78.18 76.97 

DenseNet-201 99.07 97.35 95.65 96.13 88.65 90.44 75.86 85.69 89.11 90.21 

Table 4. Original image vs. equivalent filtered edge image accuracy comparison % 
for different models. 

We were compelled to document the findings of the CMS-678-ML-Proj. GitHub dataset 
(Jamdade V. et al. 2020) analysis. In addition, any deep learning network, such as the CMS-
678-ML-Proj. Github dataset (Jamdade V. et al. 2020), is typically difficult to accomplish 
exceptional accuracy with a limited number of input samples. (Table 2) shows that IsoCore 
properly forecasts with 99.84 percent and 99.79 percent performance rate for its 3-class and 
4-class scenarios accordingly. Even when working with little datasets, the model we've 
constructed is able to perform effectively. Our proposed model, as compared to other models 
already in use, is very precise and robust. 



IsoCore – An efficient model to aid rapid forecasting of SARS-CoV-2 infection from biomedical imagery 
Faraz Bagwan, Nitin Pise 

U.Porto Journal of Engineering, 9:3 (2023) 140-157 153 

 
Data used Researchers Model used Accuracy Precision Recall F1-score 

Covid19-CT 
data 

(Silva P. et al. 
2020)  

EfficientNet with 
transfer learning 

98.99 99.20 98.80 99 

(Soares E. et al. 
2020)  

xDNN 97.38 99.16 95.53 97.31 

Proposed IsoCore 99.51 99.39 99.42 99.45 

SARS-Cov2-
CT data 

(Yang X. et al. 
2003)  

Segmentation 
masks with CSSL 

89.1 – – 89.6 

(Silva P. et al. 
2020)  

EfficientNet with 
transfer learning 

87.68 93.98 79.59 86.19 

Proposed IsoCore 99.45 99.25 99.40 99.38 

Covid + 
Pneumonia 
Chest Xray 

data 

(Zhong Y. et al. 
2007)  

VGG16 based 
CNN model 

87.3 89.67 84.4 86.96 

(Oh Y. et al. 
2020)  

DenseNet103 for 
segmentation + 

ResNet19 
88.9 83.4 85.9 84.4 

(Chandra T. et 
al. 2020)  

SVM, KNN, 
Decision trees 

93.41 – – – 

(Makris A. et al. 
2020)  

VGG16 and 
VGG19 with 

transfer learning 
95.88 

Covid-96 
Normal-95 

Pneumonia-
95 

Covid-96 
Normal-

100 
Pneumoni

a-91 

Covid-98 
Normal-98 
Pneumoni

a-98 

(Elaziz M. A. et 
al. 2020)  

MRFO + KNN 96.09 98.75 98.75 98.75 

 
(Turkoglu M. et 

al. 2020) 

Alex network with 
support vectors 

 
99.18 

 
99.48 

 
99.13 

 
99.30 

(Toğaçar M. et 
al. 2020)  

CNN for feature 
extraction+ SVM 

98.97 – 89.39 96.72  

(Hemdan E. et 
al. 2020)  

VGG19 or 
DenseNet201 

90 
Covid-83 

Normal-100 
Covid-100 
Normal-80 

Covid-91 
Normal-89 

Proposed IsoCore 99.55 99.30 99.38 99.29 

Table 5. Comparative assessment of IsoCore model with previous models 

6. Conclusions 

To identify any abnormalities produced by COVID-19 in chest radiography images, we adopt 
an effective Graph Neural Network architecture. It was tested on four distinct datasets, 
utilizing the graph Isomorphism technique to construct a classification model that performed 
well. In spite of the lack of COVID-19 photos in the datasets, model training was unaffected by 
the imbalance due to the graph-based structure of the IsoCore model. Prewitt filter41, used in 
the preprocessing stage, is used to construct the picture's borders. Consequently, our 
proposed technique utilizes processing resources and space more efficiently as compared to 
standard deep CNN networks. The architecture was trained on 11 epochs. In terms of 
evaluation, the suggested method was found to be 99.79% accurate, with a computational 
efficiency more than 20 times more than the baseline effort. In our opinion, the present 
approach is a strong contender for incorporation into medical devices or even the cell phones 
of doctors. Physicians may use the IsoCore to help them rapidly find covid19 in radiographic 
pictures. 
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