
U.Porto Journal of Engineering, 9:1 (2023) 191-228 
ISSN 2183-6493 
DOI: 10.24840/2183-6493_009-001_001282 

Received: 10 January , 2022 
Accepted: 11 February , 2022 
Published: 23 January , 2023 

 

191 

Contaminants of Emerging Concern: a Review of Risk 
Assessment and Treatment Strategies 

Mateus Pereira Caixeta 
LSRE-LCM - Laboratory of Separation and Reaction Engineering – Laboratory of Catalysis and 
Materials. ALiCE - Associate Laboratory in Chemical Engineering, Faculty of Engineering, 
University of Porto, Rua Dr. Roberto Frias, 4200-465 Porto, Portugal (up202003012@up.pt) 
ORCID 0000-0002-4382-3707. 

Abstract 

Contaminants of emerging concern (CECs) such as pharmaceutically active 
compounds (PhACs), personal care products (PCPs), pesticides, artificial sweeteners 
(ASWs) in aquatic ecosystems entail a potential risk for the environment, due to their 
persistent behavior and adverse effect on living organisms during a long-term 
exposition, even at residual concentrations. Conventional Wastewater Treatment 
Plants (WWTPs) are not designed to eliminate CECs properly because the treatment 
technologies are not enough to remove these contaminants, which generates 
environmental and technological challenges. In this review, the sources of CEC 
contaminants to aquatic environments have been discussed in detail. Understanding 
the occurrences and pathways of CECs, their adverse effects on the environment, 
and removal techniques is a valuable key for the proper maintenance of global 
ecological health. This scenario was more explored through the harmful impacts of 
CECs on the environment, including their toxic effects and permissible limits. This 
review gathers information about CECs occurrences from a global perspective 
compiling information about their ecotoxicological effects, conventional and 
advanced treatment methods towards their mitigation. Advanced hybrid treatment 
techniques such as membrane bioreactor with ozonation, reverse osmosis, and 
ultrafiltration have shown to be a promising alternative for CECs removal. New 
advanced oxidation processes with assisted and non-assisted UVC/H2O2 systems 
with TiO2 photocatalysis were also demonstrated as a good approach to be 
implemented in the CECs mitigation strategies. 
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1. Introduction 
Water is a vital resource responsible for maintaining life on earth. Manufacturing industries 
and agricultural activities need to synchronize with the population continuous growth rate by 
suppressing their demands which naturally increases water usage. Nevertheless, the 
wastewater generation also increases, increasing the responsibility of the wastewater 
treatment plants (WWTPs) to remove the contaminant species and pathogens from the 
wastewater matrix, thus recovering the quality of the water for its reuse or return to the 
environment. Over the last decade is become understandable how water scarcity is a danger 
to the sustainability of human society because of this growing demand scenario (Kleiner 1999; 
Jéquier and Constant 2009; Bond et al. 2019). 
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Pharmaceutically active compounds (PhACs), personal care products (PCPs), pesticides, 
artificial sweeteners (ASWs), X-ray contrast media, flame retardants, and stimulant/illicit 
drugs are more detected in the aqueous environment in recent decades, as they are crucial 
for the general needs of the global population and thus keep pace with the growth rate of 
society (Saidulu et al. 2021). The presence and constant release of those substances in the 
aquatic bodies seems to be an environmental issue and an emerging concern (Taheran et al. 
2018; Wan et al. 2020). The concentration of those substances in the water depends on the 
usage pattern, per capita water consumption, population density, land use, sewer conditions, 
environmental persistence, among other reasons (Ali Gamal Al-Kaf et al. 2017; Patel et al. 
2019; García et al. 2020). Usually, the average detected concentration of those substances is 
considerably low (e.g., in the range of ng/L to µg/L) and long-period of exposure to them can 
cause harmful effects on the ecosystem's health balance (Barbosa et al. 2016). These 
substances are also called contaminants of emerging concern (CECs) due to the lack of 
substantial guidelines and toxicological data (Shah et al. 2020). 
The hazardous potential of emerging contaminants has been attracting the researchers’ 
attention for a while, due to their impact on freshwater, groundwater, marine environment 
and atmosphere (Petrisor 2010; Kapelewska et al. 2018; Bilal et al. 2019). To date, an official 
regulatory methodology, assessing CECs potential toxicity with quantitative measurements, 
still hasn’t been established yet. Only a limited number of studies have been conducted 
towards a comparative analysis between maximum CECs concentrations reported in specific 
environment locations, overall harmful impact on selected environments and species and 
local anthropological data on daily water intake (Nakada et al. 2017; Parida et al. 2021). The 
Risk Quotient (RQ) methodology (Nika et al. 2020) presents a good estimation on CECs toxic 
potential and therefore was calculated for a selected group of CECs in this review, considering 
their lethal concentration (LC50) or 50% effective concentration (EC50) on selected aquatic 
organisms from different studies. 
The conventional wastewater treatment techniques are not enough to remove the CECs, so 
several studies using different treatment techniques are being carried out (Deegan et al. 2011; 
Phoon et al. 2020; Mohapatra et al. 2016). A comparative analysis was performed between 
the concentrations of CECs after a conventional treatment technique has been applied on the 
wastewater matrix and the maximum CEC concentration stated by the provisional 
international statutory guidelines (Radley-Gardner, Beale, and Zimmermann 2016; USEPA 
2016; Herschy 2012; NHMRC Australian Guidelines 2008). 
This review aims on establishing the global occurrences of CECs and their toxic potential 
against aquatic environment, showing the conventional, consolidated and advanced 
wastewater treatment techniques towards CECs removal. 

2. CEC occurrence in the environment 
Contaminants of emerging concern can be introduced into the environment via direct point 
sources, i.e., industrial effluents, hospital and household sewerage system, or indirectly via a 
wide variety of other sources, i.e., leaching and runoff during agricultural activities, dumping 
sites, atmospheric deposition and landfill leachate (Saidulu et al. 2021; Parida et al. 2021; 
Akhbarizadeh et al. 2020). 
Direct point source effluents pass through a wastewater treatment plant in order to remove 
the contaminants below the regulatory limits before discharge in the environment. 
Nevertheless, CECs have been reported persisting in the compositions of such treated 
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effluents as well as in drinking water, groundwater and surface water (Samaras et al. 2013; L. 
Rizzo et al. 2013; Krzeminski et al. 2019; Shah et al. 2020; Tran, Reinhard, and Gin 2018). 
The persistence of CECs in the treated effluents are due to the limited design of conventional 
WWTPs, which are unable to mitigate or eliminate the CECs and their metabolites, inevitably 
leading to their release as sewage effluents into streams or rivers which have an active 
biodiversity (Grandclément et al. 2017; Tran, Reinhard, and Gin 2018; Patel et al. 2019). 
In addition to conventional wastewater treatment plants releasing CEC through liquid 
discharges, the sludge formed during the removal of organic matter from the effluent also 
generates a considerable amount of these contaminants. Without a proper sludge 
management, CECs can access the groundwater through the leaching phenomenon and 
severely contaminate it over time (Wu et al. 2010; Buerge et al. 2009). 
A collection of CECs concentration data was gathered in the literature showing their presence 
in raw influent and effluent streams of WWTPs worldwide, see (Table 1). 
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Class CEC Region Concentration range (μg/L) 
in raw influent References Concentration range (μg/L) in 

effluent References 

PhACs 

Paracetamol India, South Korea, Singapore, 
Spain, UK, US 1.13 - 172.00 [1], [2], [3], [4] 0.13 – 44.65 [41], [42] 

Erythromycin  0.63 - 10.41 [2], [3], [8] 0.19 - 7.30 [42], [43] 

Ibuprofen Germany, UK, Canada, 
Portugal, Singapore 0.26 - 61.27 [5], [6], [7] 1.89 - 14.60 [42], [43], [45] 

Tetracycline China, Portugal, Spain, US, UK, 
Mexico 0.06 - 7.84 [1], [9], [10] 1.53 - 3.60 [43], [44], [46] 

Carbamazepine 

China, Switzerland, Spain, 
Italy, Greece, Germany, 
Canada, Australia, South 

Africa 

0.20 - 3.98 [12], [13], [14], [15] 0.55 - 0.72 [42], [46], [48] 

Atenolol 

South Korea, Singapore, Saudi 
Arabia, Switzerland, Spain, 
Portugal, Germany, South 

Africa 

0.28 - 28.00 [10], [15], [17] 0.52 - 7.36 [43], [46], [47] 

17 β - estradiol Mexico, South Africa 0.04 - 0.08 [16], [17] 0.01 - 0.05  

Pesticides 

Diazinon Switzerland, Spain, US 0.04 - 0.28 [18], [19] 0.05 - 0.16 [50], [51], [52] 

Malathion Spain, Italy 0.07 - 2.62 [18], [20] 0.06 - 0.8 [50], [51], [52] 

Diuron Germany, Spain 0.08 - 1.01 [18], [19], [21] 0.12 - 0.36 [49], [50], [51] 

Mecoprop Switzerland, Germany, Spain 0.23 - 0.48 [19], [21], [22] 0.02 - 0.38 [49], [50], [51] 

ASWs 

Saccharin China, Vietnam, Switzerland, 
Germany, Greece, US 15.00 - 77.74 [21], [22], [23], [24] 0.70 - 2.37 [43], [48] 

Sucralose India, China, Vietnam, 
Switzerland 1.84 - 12.63 [24], [25], [26] 1.30 - 10.1 [43], [48] 

Acesulfame Vietnam, Switzerland, Spain, 
Greece, US 13.00 - 27.00 [26], [27] 5.84 - 9.15 [43], [48] 
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Class CEC Region Concentration range (μg/L) 
in raw influent References Concentration range (μg/L) in 

effluent References 

X-ray contrast 
media 

Iohexol Switzerland, Germany 44.50 - 80.12 [9], [15], [29], [30] 2.10 - 8.7 [30], [43], [54] 

Iopromide South Korea, Vietnam, 
Switzerland, US 3.45 - 36.52 [15], [28], [29] 0.05 - 8.14 [30], [53] 

Iopamidol Vietnam, Singapore, 
Switzerland 1.46 - 14.28 [28], [29], [30] 4.70 - 6.52 [43], [54] 

Flame Retardants 
TCEP China, South Korea, Germany, 

Spain, Sweden, US, Australia 0.22 - 20.76 [31], [32] 0.20 - 10.20 [55], [56] 

TnBP China, Germany, Sweden, US 0.45 - 50.70 [31], [33] 0.3 - 37.00 [56], [57] 

Stimulants/illicit 
drugs 

Caffeine India, China, South Korea, 
Vietnam, Greece, Brazil 72.00 - 165.55 [21], [35] 0.01 - 51.70 [42], [43] 

Codeine 
India, Vietnam, Spain, 

Germany, Sweden, UK, US, 
Canada, Australia 

0.47 - 9.89 [34], [35], [36] 0.21 - 3.30 [42], [59] 

UV filters 
Benzophenone-3 

India, China, Singapore, 
Switzerland, Germany, Spain, 

Australia 
0.63 - 398.40 [37], [38], [39] 0.01 - 0.03 [58], [61] 

Octocrylene China, Germany 0.16 - 4.25 [37], [38], [39], [40] 0.15 - 1.20 [43], [60] 
Table 1: Presence of CECs in WWTPs influent and effluent streams worldwide. 

 
[1] (de Jesus Gaffney et al. 2017); [2] (Chen et al. 2016); [3] (Lutterbeck et al. 2020); [4] (Barbosa et al. 2016); [5] (Petrie, Barden, and Kasprzyk-Hordern 2015); [6] (Villarín and 
Merel 2020); [7] (J. L. Santos et al. 2009); [8] (Kasonga et al. 2021); [9] (Karthikeyan and Meyer 2006); [10] (Rathi, Kumar, and Show 2021); [11] (Varma et al. 2021); [12] (Sim 
et al. 2011); [13] (Chaturvedi et al. 2021); [14] (Saidulu et al. 2021); [15] (Pena-Pereira et al. 2021); [16] (Gani et al. 2021); [17] (Mohapatra et al. 2016); [18] (Corcoran et al. 
2012); [19] (Nie et al. 2013); [20] (Thomaidi et al. 2015); [21] (Subedi et al. 2015); [22] (Tran et al. 2015); [23] (van Stempvoort et al. 2020); [24] (Sharma et al. 2019); [25] 
(Subedi and Kannan 2014); [26] (Buerge et al. 2009); [27] (Gan et al. 2013); [28] (García-López, Rodríguez, and Cela 2010); [29] (Akao et al. 2020); [30] (Pérez and Barceló 
2006); [31] (Loos et al. 2013); [32] (U. J. Kim, Oh, and Kannan 2017); [33] (Pantelaki and Voutsa 2019); [34] (Kasprzyk-Hordern, Dinsdale, and Guwy 2009); [35] (Shah et al. 
2020); [36] (Nika et al. 2020); [37] (Gilbert et al. 2013); [38] (Krause et al. 2012); [39] (Kunisue et al. 2012); [40] (Kupper et al. 2006); [41] (Ali Gamal Al-Kaf et al. 2017); [42] 
(M. J. Gómez et al. 2007); [43] (Tran, Reinhard, and Gin 2018); [44] (Kumar, Singh, and Ambekar 2021); [45] (Blair et al. 2015); [46] (Tran et al. 2016); [47] (Boleda, Galceran, 
and Ventura 2011); [48] (Yang et al. 2017); [49] (Westlund and Yargeau 2017); [50] (Köck-Schulmeyer et al. 2013); [51] (Firouzsalari et al. 2019); [52] (Sutton et al. 2019); [53] 
(Kormos, Schulz, and Ternes 2011); [54] (Zemann et al. 2014); [55] (Xu et al. 2021); [56] (Liang and Liu 2016); [57] (Margot et al. 2015); [58] (Magi et al. 2012); [59] (Dey, Bano, 
and Malik 2019); [60] (Gago-Ferrero et al. 2013); [61] (Kapelewska et al. 2018). 



Contaminants of Emerging Concern: a Review of Risk Assessment and Treatment Strategies 
Mateus Pereira Caixeta 

U.Porto Journal of Engineering, 9:1 (2023) 191-228 196 

Household sewage is one of the head leaders in which comes to the releasing source of the 
pharmaceutically active compounds. Camotti Bastos et al. (2020) and Margot et al. (2015) 
found primary health care products in concentration ranges from 264 to 7620 µg per kilogram 
of WWTP influent wastewater matter. 
Despite the reported levels of PhACs in Table 1, paracetamol was found in Portugal in a 
concentration higher than 620 μg/L and, in the UK, concentrations higher than 510 μg/L from 
WWTP influent (Lutterbeck et al. 2020; Chen et al. 2016; de Jesus Gaffney et al. 2017). Spain 
presented a greater level of ibuprofen concentration in WWTP influent (603 μg/L) (J. L. Santos 
et al. 2009; Tran, Reinhard, and Gin 2018). 
This is because, during the winter season, the use of pharmaceuticals tends to increase due to 
seasonal illnesses such as cold, fever, and severe acute respiratory syndrome. Mohapatra et 
al. (2016) found that pharmaceuticals concentration in WWTPs influent increased over 24% in 
winter season, compared with summer season. In addition, maximum levels for tetracycline 
concentration (48 μg/L) were accounted in WWTPs influent from North America, 40 to 480 
times higher than Asia and Europe levels (Barbosa et al. 2016; Kasonga et al. 2021; Agüera, 
Martínez Bueno, and Fernández-Alba 2013). 
Pesticide use follows the population growth rate ensuring large scale crop availability by 
optimizing the agriculture practice. Asia and Americas lead the pesticides to use per area of 
cropland, overcoming 3.5 kg/ha which is 34% higher than the world’s average pesticides use. 
Europe, Oceania and Africa meet between 0.4 and 2 kg/ha of pesticide use. The most used 
class of pesticide is herbicides, with a worldwide average of 40% occurrence (FAO 2021). 
Pesticides diazinon, malathion, diuron and mecoprop were found in WWTPs in a few European 
countries, with concentration values in the order of 2.5 μg/L (Firouzsalari et al. 2019). Such 
pesticide occurrence can represent a serious threat to environmental biota due to the 
exponential bioaccumulation properties found in the pesticides over time (Katagi 2010; Li 
2020). 
Artificial sweeteners are part of a sector of society and one of the largest ones in the food 
industry. Across various WWTPs in India, considering influent, effluent and sludge samples, 
concentrations above 300 μg/L for saccharin and concentrations above 1.8 μg/L for sucralose 
were registered (Subedi et al. 2015). In the USA and China’s WWTPs samples, sucralose 
concentration levels were detected above 20 μg/L, over 2 times higher than the other artificial 
sweeteners concentration levels (Subedi and Kannan 2014; W. Guo et al. 2021). On the other 
hand, Switzerland detected concentrations of acesulfame up to 46 μg/L in untreated 
wastewaters and concentrations above 12 μg/L in treated wastewaters. Untreated 
wastewaters return to the environment and can access the groundwaters due to the hydraulic 
conductivity property of the wastewater through the porous feature of the soil (Qian, Chen, 
and Howard 2020). Persistence levels of artificial sweeteners were also detected in North 
America and Western Europe around 5 μg/L (Buerge et al. 2011; van Stempvoort et al. 2020). 
X-ray contrast media are widely used in daily hospital exams. Administered intravascularly, X-
ray contrast media can be consumed from 200 to 725 g in a daily routine of exams (Weissbrodt 
et al. 2009; Kormos, Schulz, and Ternes 2011). Iodinated X-ray contrast media type are the 
most commonly used, e.g. Iohexol, Iopromide and Iopamidol. Considering their high 
biochemical stability, they are excreted via urine and feces mainly in non-metabolized forms 
and consequently enter in the sewage system (Tran, Reinhard, and Gin 2018). Iohexol and 
iopamidol have been reported in wastewater influents of the Southeast Asia region, with a 
maximum concentration of 124.9 μg/L and 45.6 μg/L, respectively. On the other hand, 
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Portugal’s WWTPs influents presented a maximum iopromide concentration of 164 μg/L (Tran 
and Gin 2017; Patel et al. 2019). 
As a prevention mechanism, flame retardants are incorporated into combustible materials to 
delay their ignition point and prevent flame propagation by interrupting or hindering the 
combustion process (Pantelaki and Voutsa 2019). Organophosphate flame retardants (OPFRs) 
were detected in airborne particles over the ocean, which may suggest that these compounds 
can be transported within a long-range distance in atmospheric medium over the ocean 
towards Arctic and Antarctic areas (Möller et al. 2012). (Ma et al. 2017) detected OPFRs in 
ocean sediments over Arctic areas, inferring the long transport of these compounds also via 
the aquatic medium. Gustavsson et al. (2018) found traces of OPFRs in northern Swedish rivers 
without a source point. The authors suggested the long-range atmospheric transport could be 
the source pathway. Table 1 shows concentrations levels for tri(2-chloroethyl) Phosphate 
(TCEP) and tri-n-butyl phosphate (TnBP) found in worldwide WWTPs influent and effluent 
streams. 
Other types of substances considered CECs are the alkaloids, caffeine and codeine. Caffeine 
makes the population's daily diet with consumption of more than 170 mg per day in 
consumers over 23 years of age (Mitchell et al. 2014; Mahoney et al. 2019). Levels above 200 
μg/L of caffeine were found in Portugal and Spain WWTPs influent samples (Tran, Reinhard, 
and Gin 2018; Ramírez-Malule, Quiñones-Murillo, and Manotas-Duque 2020). Higher caffeine 
concentrations were observed in WWTP influents located in the UK, with more than 540 μg/L 
registered (Nakada et al. 2017). US WWTP influents presented up to 300 μg/L of caffeine and 
Asia, average levels above 100 μg/L (Chaturvedi et al. 2021; Patel et al. 2019; Deegan et al. 
2011). Codeine is one of the most used opioids against pain, cough, cold and flu, when 
combined with other antihistamines and decongestants; reaching an average above 25 
consumed tablets per person (Schaffer et al. 2020). Maximum values concentration of codeine 
were found above 32 μg/L in US and UK wastewater effluents (Parida et al. 2021). 
Sunscreens, lotions, and shampoos incorporated with UV filters are the most commonly used 
PCPs in European countries, resulting in the highest concentration of UV filters in different 
environmental matrices (Brausch and Rand 2011). 

3. Harmful impacts of CECs in environment 
One of the main concerns about emerging contaminants lies in their accumulation potential 
over time or their retention into the organism structure. That phenomenon is denominated 
bioaccumulation factor, ordinarily calculated as the ratio of the compound of interest 
concentration in the biota sample (plant, animals) to that in the surrounding media, e.g. soil 
or water (Zenker et al. 2014; Shenker et al. 2011). Although this definition of bioaccumulation 
factor seems to be a straight way calculation, there are some specific models and criteria to 
take in consideration depending on the substances that are being investigated. One known 
criterion is the use of octanol–water partition coefficient (Kow) being > 5 as listed in Annex D 
of the Stockholm Convention (Gobas et al. 2009). Bioaccumulation can occur via direct 
exposure, when humans and animals drink contaminated water, or via trophic levels 
succession along the food chain (Majumder, Gupta, and Gupta 2019). 
Emerging contaminants generally present a high molecular weight and unique chemical 
structure, in which some specific functional groups are combined, e.g. benzene, amine, amide 
fluoride, carboxyl, ketone, among others. The physical, chemical and toxicological properties 
of a compound are related to its molecular structure. Therefore, the harmful potential of CECs 
may be evaluated based on the reactivity of the attached functional groups and their 
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decomposition products (Barratt 2000; Parida et al. 2021). An extended exposure can cause 
adverse effects on the aquatic biota and, in some cases, may impact the hormonal and 
metabolic activity of animal and human beings (Bolong et al. 2009; Tran, Reinhard, and Gin 
2018; Rout et al. 2021). 
Contaminants of emerging concern containing nitrogen groups (amine, amide, cyclic amine), 
such as paracetamol, erythromycin, norfloxacin, ciprofloxacin, tetracycline, carbamazepine, 
saccharin, iohexol, caffeine, diuron, among others, can form toxic fumes of nitrogen oxides 
when decomposed (Parida et al. 2021). Hydrogen fluoride gas is also formed from the 
decomposition of fluoride-based compounds for example ciprofloxacin and norfloxacin 
(Parida et al. 2021). The presence of ketone groups (e.g. saccharin, erythromycin and 
benzophenone molecular structures) in a high concentration may cause toxic to living beings 
organism (Schultz and Yarbrough 2007). X-ray contrast media substances like iohexol, 
iopromide and iopamidol finds their toxicity mainly due to the presence of the benzene group, 
which is similar to the pesticides. In addition, Iopromide is a dicarboxylic acid diamide, which 
acts as a radiopaque medium, a nephrotoxic agent, and a xenobiotic substance (Kaller and An 
2021). Many phenolic compounds act as carcinogen, causing damages to the red blood cells 
and liver, even in low concentrations. When they interact with microorganisms, other organic 
or inorganic substances in water, has a chance to produce substituted chemical species, which 
may be as toxic as the original phenolic compounds (Anku, Mamo, and Govender 2017). CECs 
have a significant impact on the aquatic biota, where a proper understanding of their 
environmental implications should be established. 
Quantitative risk assessment of CECs toxic behavior can be estimated by the Risk Quotient 
(𝑅𝑅𝑄𝑄) value, calculated using (Equation (1) (Nika et al. 2020). 

𝑅𝑅𝑄𝑄 =
𝑀𝑀𝑀𝑀𝑀𝑀

𝑃𝑃𝑃𝑃𝑀𝑀𝑀𝑀𝑎𝑎𝑎𝑎
 (1) 

where 𝑀𝑀𝑀𝑀𝑀𝑀 (mg/L) is the average of the highest measured concentrations of a compound 
detected in wastewater from different locations; 𝑃𝑃𝑃𝑃𝑀𝑀𝑀𝑀𝑎𝑎𝑎𝑎 (mg/L) is the Predicted Non-Effect 
Concentration estimated according to the (Equation (2), which an assessment factor of 1000 
was used to adjust the PNEQ values and have been done this way because risk assessment 
was carried out using only acute toxicity data, due to scarce chronic toxicity data available 
(Nika et al. 2020). 

𝑃𝑃𝑃𝑃𝑀𝑀𝑀𝑀𝑎𝑎𝑎𝑎 =
𝑀𝑀𝑀𝑀50 or 𝐿𝐿𝑀𝑀50

1000
 (2) 

where 𝑀𝑀𝑀𝑀50 and 𝐿𝐿𝑀𝑀50 are the 50% Effective Concentration and 50% Lethal Concentration of 
the CEC respectively (mg/L). These two parameters are described by the European 
Commission Directive (EU Directive 98/8/EC 1998) as a concentration causing 50 % inhibition 
of a given parameter, e.g. growth of an aquatic organism). 
Values of 𝑅𝑅𝑄𝑄 > 1 have been reported as a potential high risk to aquatic life. On the other hand, 
values of 𝑅𝑅𝑄𝑄 between 1 and 0.1, represent a medium risk and for values below 0.1, represents 
a low risk to the aquatic environment (Gani et al. 2021; Parida et al. 2021). Figure 1 shows the 
calculated Risk Quotient values considering four different types of aquatic organisms: fish, 
daphnia, algae and crustaceans taking into account the values of 𝑀𝑀𝑀𝑀50 or 𝐿𝐿𝑀𝑀50 found in the 
literature for the following CECs: paracetamol (Yamamoto et al. 2007; Y. Kim et al. 2007; 
Henschel et al. 1997), ibuprofen (Ginebreda et al. 2010; Sharma et al. 2019), ciprofloxacin 
(Sharma et al. 2019), erythromycin (González-Pleiter et al. 2013; J. W. Kim et al. 2009), 



Contaminants of Emerging Concern: a Review of Risk Assessment and Treatment Strategies 
Mateus Pereira Caixeta 

U.Porto Journal of Engineering, 9:1 (2023) 191-228 199 

norfloxacin (Eguchi et al. 2004; Y. Kim et al. 2007), trimethoprim (Y. Kim et al. 2007; de Andrés, 
Castañeda, and Ríos 2009; Minguez et al. 2016), tetracycline (Brausch and Rand 2011; 
Wollenberger, Halling-Sørensen, and Kusk 2000; González-Pleiter et al. 2013), carbamazepine 
(Ferrari et al. 2004; Sharma et al. 2019; J. W. Kim et al. 2009; Y. Kim et al. 2007), atenolol 
(Sharma et al. 2019; de Andrés, Castañeda, and Ríos 2009), 17- β estradiol (Lin et al. 2020), 
saccharin, sucralose (Sharma et al. 2019), iopromide (J. Guo 2015; L. H. M. L. M. Santos et al. 
2010), caffeine (Sharma et al. 2019), codeine (J. Guo 2015), diazinon , malathion and diuron 
(Munn et al. 2001). 
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Figure 1 - Risk quotients of different CECs for different aquatic organisms (fish, daphnia, algae and crustaceans) with respect to acute toxicity for each of them. 
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Through a similar methodology, Xiang et al. (2021) calculated the 𝑅𝑅𝑄𝑄 values for PhACs and 
personal care products with respect to different aquatic species and found that ciprofloxacin, 
erythromycin, triclosan, and diclofenac have shown high risk magnitudes with 𝑅𝑅𝑄𝑄 > 10. 
(Thomaidi et al. 2015) investigated 30 CECs, which most of the were PhACs. Authors obtained 
a 𝑅𝑅𝑄𝑄 > 1 were calculated for the 30 compounds concentration in secondary treated 
wastewater, considering the lethal concentration for fish, daphnia and algae. Even higher 
values of 𝑅𝑅𝑄𝑄 has also been reported for ibuprofen, concerning the acute toxicity to daphnia 
and algae groups [6.76 and 15.32 respectively] (Kovalova et al. 2013; Song et al. 2018). 
Paracetamol 𝑅𝑅𝑄𝑄 levels of 5.72 has been found against the crustacean species (Dolar et al. 
2012). Despite the low risk values of 𝑅𝑅𝑄𝑄 for diazinon and malathion, showed inError! Reference 
source not found., Pelaez et al. (2012) estimated lethal concentrations for daphnia species which 
resulted in extremely high 𝑅𝑅𝑄𝑄 values of 308.8 and 204.7 respectively. Other CEC considered 
very toxic to fish, daphnia and algae species is the plasticizer, bisphenol-A, found to present 
𝑅𝑅𝑄𝑄 levels of 109.8, 26.7 and 105.6 (Chowdhury, Viraraghavan, and Srinivasan 2010). 
Nevertheless, more research is necessary on the selection of aquatic species and 𝑃𝑃𝑃𝑃𝑀𝑀𝑀𝑀𝑎𝑎𝑎𝑎 
values, in order to evaluate the toxicity on the aquatic environment. 
Nie et al. (2013) discovered that some antibiotics can prevent the photosystem II electron 
transport chain during the ATP synthase process, thereby inhibiting the photosynthesis 
process. Antibiotics can also affect prokaryotic cells through a complex mechanism, such as 
inhibition of nucleic acid (DNA/RNA) synthesis, protein synthesis, and cell envelope synthesis 
in aquatic organisms (Patel et al. 2019). Iodinated x-ray contrast substances and their 
metabolites were found to present some toxic level influence in animals and humans (Waqas 
et al. 2020; E. F. Gómez and Michel 2013). Reproductive hazards like spermatogenesis, 
teratogenesis or other reproductive impairment have been detected in animal and human 
organism, caused by diazinon (Daniela A et al. 2015; Harchegani et al. 2018). Malathion 
exposure in rats induced a degradation process of membrane lipids, involving the 
deterioration of the cellular integrity (lipid peroxidation LPO), reported by (Rezg et al. 2008). 
Other pesticides as mecoprop and diuron have shown to cause organ damage and 
erythropoiesis irregularity (Domingues et al. 2011; Food Safety Authority et al. 2017). In the 
case of ASWs, it has been found that acesulfame, saccharin and sucralose have a potential to 
decrease the microbial diversity, parallel to an increase of proinflammatory species inside the 
body and alterations in the composition of gut microbiota and intestinal epithelial barrier 
(Ruiz-Ojeda et al. 2019). 

4. Treatment methods towards CECs mitigation 
Several different biological treatment techniques are well consolidated where removal of 
organic matter and nutrients from wastewater are the main concern. Processes like activated 
sludge process (ASP), constructed wetland (CWs), trickling filters (TFs), sequential batch 
reactor (SBR), oxidation ditches, facultative lagoons, etc., are wide investigated due to their 
cost-effectiveness operation (Miège et al. 2009; van Stempvoort et al. 2020; Subedi et al. 
2015; Chen et al. 2016). Numerous studies have already demonstrated those mentioned 
treatment techniques removing up to 90% of the organic matter from targeted wastewater 
matrices (Salter et al. 2000; Zieliński, Zielińska, and Debowski 2013; Showkat and Najar 2019; 
Luo et al. 2020; Waqas et al. 2020; Varma et al. 2021). However, when those conventional 
wastewater treatment techniques are applied to mitigate CECs concentration (see Table 2), 
such good efficiency is limited to a few specific compounds and treatment processes. 
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Another important factor to be considered during the treatment process of wastewaters, are 
the regulatory guidelines. Table 2 also describes a few existing regulatory guidelines to deal 
with the CECs from European Union (EU), United States Environmental Protection Agency (US 
EPA), Australian Drinking Water Guidelines (ADWG) and World Health Organization (WHO) 
(Radley-Gardner, Beale, and Zimmermann 2016; Carvalho et al. 2016; Korkaric et al. 2019; 
NHMRC Australian Guidelines 2008; Seibert et al. 2020; Careghini et al. 2015). Comparing the 
regulatory guidelines’ max limits and the treated effluent concentration of the selected CECs 
Table 2, it is possible to see that most of the CECs extrapolate the concentration limits, which 
could indicate the level of limitation faced by those treatment techniques. However, 
sucralose, saccharin, acesulfame, tetracycline, norfloxacin, atenolol, iohexol, iopromide, 
iopamidol and mecoprop were satisfying the guideline values due to the high permissible 
discharge limits. 
On the other hand, there are some well consolidated wastewater treatment techniques, 
which can mitigate the CECs in a more efficient and economically feasible way, such as 
pressure-driven processes (e.g. reverse osmosis (RO) and nanofiltration membranes (NF)), 
ozonation, and activated charcoal (AC) treatment (Shah et al. 2020). Ozonation treatment can 
result in the formation of by-products (e.g. N‑nitrosodimethylamine (NDMA) and bromate), 
therefore a post-treatment step with a biological active sand filter is recommended to 
mitigate those unwanted compounds (Hollender et al. 2009), as they can severely damage the 
human and animal organs (Klein et al. 1991; WHO 2005). Wastewater treatment using AC 
offers no by-product formation and low energy consumption, although the CECs adsorbed 
from the wastewater matrix placed on the surface of the charcoal, generally are considered 
hazardous to the environment, and hence require proper disposal strategies (Rajasulochana 
and Preethy 2016; Luigi Rizzo et al. 2019). According to some studies, ozonation treatment for 
CECs removal usually is more efficient for certain compounds such as diclofenac, gabapentin, 
and sulfamethoxazole, while AC treatment was found to be effective for some CECs 
(benzotriazole, fluconazole, valsartan) (Margot et al. 2013; Kovalova et al. 2013; Jekel et al. 
2015; Luigi Rizzo et al. 2019). Both ozonation and AC demonstrated inefficacy in the removal 
of negatively charged iodinated contrast media, however AC performed a slightly better 
removal of iopromide compared with ozonation (Knopp et al. 2016). In the other hand, steroid 
hormones like estrone (E1), 17β-estradiol (E2) and 17α-ethinylestradiol (EE2) are effectively 
removed by both ozonation (Sun et al. 2017) and AC (Margot et al. 2013) treatment 
techniques. 
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Method Type of 
wastewater Concentration of contaminant CEC removal efficiency Reference Statutory guidelines Reference 

ASP 
Municipal, 

industrial 

Ibuprofen: 2640 - 5700 ng/L 

17β-estradiol: 2 - 3 ng/L 

Ibuprofen: < 70% 

17β-estradiol: 65% 
[62] 

Ibuprofen: 11 ng/L 

17β-estradiol: 1 ng/L 
[78, 79] 

ASP 
Municipal, 

industrial 

Caffeine: 6170 ng/L 

Ibuprofen: 93600 ng/L 

Carbamazepine: 480 ng/L 

Caffeine: 44 - 75% 

Ibuprofen: 80 - 88% 

Carbamazepine: 8 - 15% 

[63] 

Caffeine: 500 ng/L 

Ibuprofen: 11 ng/L 

Carbamazepine: 10 ng/L 

[78, 79, 81] 

ASP Municipal 
Paracetamol: 1629 ng/L 

Carbamazepine: 566 ng/L 

Paracetamol: 76.5% 

Carbamazepine: 32.7% 
[64] 

Paracetamol: 1100 ng/L 

Carbamazepine: 10 ng/L 
[81] 

ASP 
Domestic, 

industrial and 
hospital 

Acesulfame: 360 ng/L 

Iopromide: 100 ng/L 

Acesulfame: 47.2% 

Iopromide: 75 % 
[65] 

Acesulfame: 1x108 ng/L 

Iopromide: 750000 ng/L 
[81] 

ASP Residential, 
hospital 

Iohexol: 115436.5 ng/L 

Iopamidol: 34887 ng/L 

Carbamazepine: 323.8 ng/L 

Bisphenol A: 5733.5 ng/L 

Iohexol: 50.6% 

Iopamidol: 14.4% 

Carbamazepine: 4.6% 

Bisphenol A: 85.8% 

[66] 

Iohexol: 720000 ng/L 

Iopamidol: 400000 ng/L 

Carbamazepine: 10 ng/L 

Bisphenol A: 80 ng/L 

[78, 80, 81] 

ASP - 
Diazinon: 316 ng/L 

Diuron: 2526.1 ng/L 

Diazinon: 57.2 % 

Diuron: 5.3% 
[67] 

Diazinon: 0.4 ng/L 

Diuron: 90 ng/L 
[78, 81 - 83] 

ASP - Mecoprop: 252 ng/L Mecoprop: 19.4% [68] Mecoprop: 2100 ng/L [78, 79] 

ASP Municipal 

Sucralose: 5289 ng/L 

Acesulfame: 3863 ng/L 

TCEP: 439 ng/L 

Carbamazepine: 188 ng/L 

Sucralose: 24% 

Acesulfame: 4% 

TCEP: 21% 

Carbamazepine: 17% 

[69] 

Sucralose: 1x108 ng/L 

Acesulfame: 1x108 ng/L 

TCEP: 1000 - 4000 ng/L 

Carbamazepine: 10 ng/L 

[78, 81] 

ASP Municipal TCEP: 1430 ng/L TCEP: 23% [70] TCEP: 1000 ng/L [81] 

ASP Municipal TnBP: 74.4 ng/L TnBP: 61.3% [71] TnBP: 100 ng/L [79] 

ASP, 

Trickling filters 
Communal, 
industrial 

Erythromycin: 1609 ng/L 

Codeine: 10321 ng/L 

Atenolol: 12913 ng/L 

Erythromycin: 13.9% 

Codeine: 48.9% 

Atenolol: 77.7% 

[72] 

Erythromycin: 100 ng/L 

Codeine: 1000 ng/L 

Atenolol: 90000 ng/L 

[78, 81] 
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Method Type of 
wastewater Concentration of contaminant CEC removal efficiency Reference Statutory guidelines Reference 

SBR activated 
sludge 

Domestic, 
industrial 

Sucralose: 2100 ng/L 

Acesulfame: 16000 ng/L 

Saccharin: 7200 ng/L 

Sucralose: 14.3% 

Acesulfame: 6.2% 

Saccharin: 96.2% 

[73] 

Sucralose: 1x108 ng/L 

Acesulfame: 1x108 ng/L 

Saccharin: 1x108 ng/L 

[84] 

Facultative 
lagoon 

Industrial, 
commercial 

Acesulfame: 12900 ng/L 

Sucralose: 15300 ng/L 

Acesulfame: 43% 

Sucralose: 56.5% 
[74] 

Acesulfame: 1x108 ng/L 

Sucralose: 1x108 ng/L 
[84] 

Primary, 

chemical 
assist, 

ultraviolet 
disinfection 

Industrial, 
commercial 

Acesulfame: 17700 ng/L 

Sucralose: 26000 ng/L 

Acesulfame: 11.8% 

Sucralose: 19.1% 
[74] 

Acesulfame: 1x108 ng/L 

Sucralose: 1x108 ng/L 
[84] 

Constructed 
wetlands Municipal Paracetamol: 180000 ng/L Paracetamol: 91% [75] Paracetamol: 1100 ng/L [81] 

Anaerobic 
fluidized bed 

reactor 
Municipal 

Paracetamol: 2695 ng/L 

Ciprofloxacin: 157 ng/L 

Erythromycin: 319 ng/L 

Caffeine: 3470 ng/L 

Paracetamol: 87.8% 

Ciprofloxacin: 89.4% 

Erythromycin: 58.7% 

Caffeine: 86.7% 

[76] 

Paracetamol: 1100 ng/L 

Ciprofloxacin: 100 ng/L 

Erythromycin: 100 ng/L 

Caffeine: 500 ng/L 

[79, 81] 

Biological 
nutrient 
removal 

Municipal Paracetamol: 2695 ng/L Paracetamol: 84% [77] Paracetamol: 1100 ng/L [81] 

Table 2 – Removal efficiency of CECs by different conventional wastewater treatment techniques. 
[62] (Carballa et al. 2004); [63] (J. L. Santos et al. 2009); [64] (Stamatis and Konstantinou 2013); [65] (Watanabe et al. 2016); [66] (Tran and Gin 2017); [67] (Masiá et al. 2013); 
[68] (Wick, Fink, and Ternes 2010); [69] (Ryu et al. 2014); [70] (U. J. Kim, Oh, and Kannan 2017); [71] (Liang and Liu 2016); [72] (Kasprzyk-Hordern, Dinsdale, and Guwy 2009); 
[73] (Gan et al. 2013); [74] (van Stempvoort et al. 2020); [75] (Vymazal et al. 2017); [76] (Dutta et al. 2014); [77] (Park et al. 2017); [78] (Korkaric et al. 2019); [79] (Carvalho 
et al. 2016); [80] (Careghini et al. 2015); [81] (NHMRC Australian Guidelines 2008); [82] (Radley-Gardner, Beale, and Zimmermann 2016); [83] (Seibert et al. 2020); [84] (Parida 
et al. 2021). 
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Covering a wider number of CECs removal, advanced treatment techniques such as usage of 
membrane bioreactor (MBR) integrated systems have been shown a good performance in 
some studies (Qin et al. 2018; Rodriguez-Sanchez et al. 2018; Iorhemen et al. 2018; Dhangar 
and Kumar 2020). However, MBR treatment is inefficient against biologically persistent and 
hydrophobic compounds, motivating researchers to combine MBR with other techniques such 
as ultrafiltration (UF) (Holloway et al. 2014), reverse osmosis (RO) (Dolar et al. 2012), activated 
charcoal (AC) (Kovalova et al. 2013), advanced oxidation process (AOPs) (Nguyen et al. 2013), 
membrane distillation (Song et al. 2018), etc., towards the removal of recalcitrant CECs. Parida 
et al. (2021) gathered 78 combinations of advanced treatment techniques to remove CECs 
from wastewater, which 38 were combinations of MBR with aforementioned techniques or 
other types of advanced treatment. Between the 38 combinations, only BioMnOx-MBR 
presented CEC removal efficiency lower than 80% for iohexol and ioprimide (Forrez et al. 
2011), all other MBR combinations lead the CEC removal efficiency around 95%. (Table 3) 
presents a review on hybrid systems that combine advanced treatment techniques to remove 
CECs. Most of the hybrid treatment techniques presented showed a high efficiency (≥ 90%) 
removal with exception for the BioMnOx (biogenic metals manganese oxides) - Membrane 
Bioreactor process, which removal efficiencies did not reach 80% for iohexol and iopromide 
(Forrez et al. 2011), nevertheless their non-treated and treated concentration were below the 
Statutory Guideline level, what shows to be difficult to analyze this hybrid treatment efficacy 
in this specific case. For the iodinated contrast media compounds, the authors (Forrez et al. 
2011) found a removal efficiency higher than 90% using a bio-palladium (Bio-Pd) - Membrane 
Bioreactor hybrid process. From the (Table 3) data analysis, it is clear that treatment process 
integrating ozone (O3), membranes (ultrafiltration, microfiltration, osmotic MBR or reverse 
osmosis) and Ultraviolet stands in the front in what comes to the CECs removal performance, 
but further feasibility analysis should take place on those treatment techniques, due to their 
relatively high energy consumption and maintenance cost (Agustina, Ang, and Vareek 2005). 
New advanced technologies are being investigated towards CECs mitigation with promising 
results (Castellanos et al. 2020; Vilar et al. 2020). A hybrid technique of hydrogen peroxide 
(H2O2) oxidant and UV radiation with membrane technology functioning as a multiple point 
oxidant doser were combined.  This combination gave rise to a tube-in-tube membrane 
contactor that has already been used for CECs removal from synthetic and real wastewater 
matrices, assisted with heterogeneous TiO2 photocatalysis (Castellanos et al. 2020) and using 
a UVC/ H2O2 system (Vilar et al. 2020). The highlight point of those investigations on tube-in-
tube technology were the good removal efficiency considering a very short residence time 
(4.6 s) and a low UVC fluence (30 to 45 mJ/cm2). Castellanos et al. (2020) achieved E2 and EE2 
removal percentages of 51/32% and 48/30%, respectively, for both synthetic and real 
municipal wastewater matrix, using 45 mJ/cm2 of UVC fluence. Vilar et al. (2020) achieved 
oxytetracycline (OTC) removal efficiencies of 36% and 7% for the synthetic and real urban 
wastewater composition respectively, using 34 mJ/cm2 of UVC fluence. The authors conclude 
that the tube-in-tube membrane contactor has the advantage of an easy upscaling into a real 
WWTP by implementing multiple parallel membranes into a single shell. In terms of removal 
percentage, CECs mitigation using the tube-in-tube technology may appear to have a low 
efficiency comparing it to any other treatment technique presented in this review. However, 
it must be considered that the treatment techniques presented (traditional and advanced), 
authors carried out their investigations in a pilot or full municipal/industrial scale, which the 
contact time between the contaminant and the removal agent is in the order of hours or days. 
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Contaminants Hybrid treatment technique Concentration Removal Efficiencies References 

Paracetamol 

Ultrafiltration membrane - 
Osmotic Membrane Bioreactor 61200 ± 18216 ng/L 100% [85] 

Microfiltration membrane-
Granular Activated Carbon 114 ng/L > 96% [86] 

Aerated lagoon – Constructed 
Wetland – Ultraviolet 39300 ng/L >99% [87] 

Ibuprofen 

Constructed Wetland - Ozonation 15000 ng/L 97.2% [88] 

Ultrafiltration - Osmotic 
Membrane Bioreactor 15680 ± 3444 ng/L 100% [85] 

Anaerobic Membrane Bioreactor 
– Membrane Distillation 2000 ng/L > 95% [86] 

Aerated lagoon – Contructed 
Wetland - Ultraviolet 9922 ng/L >99% [87] 

Sequential Batch Reactor 
+Nanofiltration 10000 ng/L 99 ± 0.4% [89] 

Ciprofloxacin 

Sponge Membrane Bioreactor -
Ozonation 7280 ng/L 83 ± 7% [90] 

Membrane Bioreactor + 
Powdered Activated Carbon 15700 ng/L 100 ± 0% [91] 

Erythromycin 

Sponge Membrane Bioreactor -
Ozonation 1070 ng/L 90 ± 1% [90] 

Membrane Bioreactor + Reverse 
Osmosis 49 ng/L >99% [92] 

Norfloxacin 

Sponge Membrane Bioreactor -
Ozonation 16680 ng/L 92 ± 4% [90] 

Membrane Bioreactor + 
Powdered Activated Carbon 3140 ng/L > 99% [91] 

Nanofiltration - Ultraviolet/O3 221 ng/L > 99% [93] 
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Contaminants Hybrid treatment technique Concentration Removal Efficiencies References 

Trimethoprim 

Sponge Membrane Bioreactor -
Ozonation 1280 ng/L 97 ± 2% [90] 

Ultrafiltration - Osmotic 
Membrane Bioreactor 13 ± 22 ng/L 100% [85] 

Anaerobic Membrane Bioreactor 
– Membrane Distillation 2000 ng/L > 95% [86] 

Microfiltration-Granular 
Activated Carbon 974 ng/L > 99% [86] 

Tetracycline Sponge Membrane Bioreactor -
Ozonation 730 ng/L 100 ± 0% [90] 

Carbamazepine 

Membrane Bioreactor + 
Powdered Activated Carbon 235 ng/L 100 ± 0% [91] 

Sequential Batch Reactor 
+Nanofiltration 14500 ng /L 93 ± 3% [89] 

Membrane Bioreactor + Reverse 
Osmosis 83 ng/L >99% [92] 

Microfiltration-Granular 
Activated Carbon 2240 ng/L > 99% [86] 

Atenolol 

Ultrafiltration - Osmotic 
Membrane Bioreactor 61200 ± 18216 ng/L 100% [85] 

Microfiltration-Granular 
Activated Carbon 466 ng/L > 99% [86] 

Sequential Batch Reactor 
+Nanofiltration 10000 ng /L 99 ± 0.8% [89] 

Membrane Bioreactor + Reverse 
Osmosis 1820 ng/L >99% [92] 

Aerated lagoon – Contructed 
Wetland – Ultraviolet 1442 ng/L >99% [87] 
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Contaminants Hybrid treatment technique Concentration Removal Efficiencies References 

17 β -Estradiol 

Membrane Bioreactor – Reverse 
Osmosis and Membrane 
Bioreactor – Ultraviolet 

5000 ng/L 
> 90% for (MBR - RO), 

> 90% for (MBR - UV) 
[94] 

Membrane Bioreactor - Granular 
Activated Carbon 5000 ng/L 100% [95] 

Flocculation-Activated Sludge- 
Ultrafiltration 14 ng/L > 90% [96] 

Osmotic Membrane Bioreactor 
+Microfiltration 5000 ng/L > 95% [97] 

Sucralose 

Sequential Batch Reactor 
+Nanofiltration 13500 ng/L 88 ± 11% [89] 

Ultrafiltration - Osmotic 
Membrane Bioreactor 42366 ± 12586 ng/L 100% [85] 

Acesulfame 

Sequential Batch Reactor 
+Nanofiltration 13500 ng/L 81 ± 16% [89] 

Ultrafiltration - Osmotic 
Membrane Bioreactor 12236 ± 9155 ng/L 100% [85] 

Iohexol 

BioMnOx (biogenic metals 
manganese oxides)- Membrane 

Bioreactor 
224 ng/L 72% [98] 

Activated Sludge - Slow sand 
filter 3280 ng/L 91 ± 8% [99] 
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Contaminants Hybrid treatment technique Concentration Removal Efficiencies References 

Iopromide 

Sequential Batch Reactor 
+Nanofiltration 10000 ng/L 90 ± 8% [89] 

Activated Sludge - Slow sand 
filter 2900 ng/L 91 ± 6% [99] 

Membrane Bioreactor + 
Ultraviolet 118000 ng/L 92 ± 0% [91] 

BioMnOx (biogenic metals 
manganese oxides)- Membrane 

Bioreactor 
454 ng/L 68% [98] 

Membrane Bioreactor + 
Powdered Activated Carbon 118000 ng/L 91 ± 0% [91] 

Iopamidol 

Membrane Bioreactor + 
Powdered Activated Carbon 3353000 ng /L 80 ±2% [91] 

Membrane Bioreactor + 
Powdered Activated Carbon 3353000 ng /L 92 ± 1% [91] 

Octocrylene 

Osmotic Membrane Bioreactor 
+Microfiltration 5000 ng/L 90% [97] 

Osmotic Membrane Bioreactor – 
Reverse Osmosis 5000 ng/L > 90% [100] 

Benzophenone-3 

Ultrafiltration - Osmotic 
Membrane Bioreactor – Reverse 

Osmosis 
3442 ± 1232 ng/L 100% [85] 

Osmotic Membrane Bioreactor – 
Reverse Osmosis 5000 ng/L > 90% [100] 

Osmotic Membrane Bioreactor 
+Microfiltration 5000 ng/L > 95% [97] 



Contaminants of Emerging Concern: a Review of Risk Assessment and Treatment Strategies 
Mateus Pereira Caixeta 

U.Porto Journal of Engineering, 9:1 (2023) 191-228 210 

Contaminants Hybrid treatment technique Concentration Removal Efficiencies References 

TCEP 

Ultrafiltration - Osmotic 
Membrane Bioreactor – Reverse 

Osmosis 
810 ± 687 ng/L > 95% [85] 

Sequential Batch Reactor 
+Nanofiltration 10000 ng/L 89 ± 7% [86] 

Anaerobic Membrane Bioreactor 
– Membrane Distillation 2000 ng/L > 90% [86] 

Caffeine 

Anaerobic Membrane Bioreactor 
– Membrane Distillation 2000 ng/L > 95% [86] 

Microfiltration-Granular 
Activated Carbon 1410 ng/L > 99% [86] 

Ultrafiltration - Osmotic 
Membrane Bioreactor 82457 ± 16903 ng/L 100% [85] 

Aerated lagoon – Constructed 
Wetland - Ultraviolet 25567 ng/L >99% [87] 

Codeine 

Membrane Bioreactor + Reverse 
Osmosis 152 ng/L >99% [92] 

BioMnOx (biogenic metals 
manganese oxides)- Membrane 

Bioreactor 
151 ng/L >93% [98] 

Bisphenol-A 

Osmotic Membrane Bioreactor – 
Reverse Osmosis 5000 ng/L > 90% [100] 

Flocculation-Activated Sludge- 
Ultrafiltration 857 ng/L > 90% [96]  

Membrane Bioreactor – Granular 
Activated Carbon 5000 ng/L > 90% [95]  

Sequential Batch Reactor 
+Nanofiltration 13000 ng/L 99 ± 0.4% [89]  

Diazinon Anaerobic Membrane Bioreactor 
– Membrane Distillation 2000 ng/L > 95% [86]  
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Contaminants Hybrid treatment technique Concentration Removal Efficiencies References 

Malathion Ni doped TiO2 nanoparticles 200 ng/L 94% [101] 

Mecoprop 
BioMnOx (biogenic metals 

manganese oxides)- Membrane 
Bioreactor 

55 ng/L > 81% [98] 

Diuron 

BioMnOx (biogenic metals 
manganese oxides)- Membrane 

Bioreactor 
67 ng/L > 94% [98] 

Anaerobic Membrane Bioreactor 
– Membrane Distillation 2000 ng/L > 95% [86] 

Table 3 – Hybrid treatment performances of different advanced techniques towards CECs removal from wastewater. 
 
[85] (Holloway et al. 2014); [86] (Shanmuganathan et al. 2017); [87] (Conkle, White, and Metcalfe 2008); [88] (Lancheros et al. 2019); [89] (Wei et al. 2018); [90] (Vo et al. 
2019); [91] (Kovalova et al. 2013); [93] (Liu et al. 2014); [92] (Dolar et al. 2012); [94] (Nguyen et al. 2013); [95] (Nguyen et al. 2013); [96] (Melo-Guimarães et al. 2013); [97] 
(W. Luo et al. 2015); [98] (Forrez et al. 2011); [99] (Escolà Casas and Bester 2015); [100] (W. Luo et al. 2017); [101] (Surendra et al. 2020). 
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5. Conclusions 
The growing use of pharmaceutically active compounds, personal care products, artificial 
sweeteners, UV-filters, X-ray contrast media, pesticides, etc., contributes to the maintenance 
of those compounds in the wastewater matrices. CECs occurrence is a global matter, although 
the most prominent occurrence is through Europe and Asia. Without an adequate treatment 
system and limitations in the regulatory guidelines to deal with such compounds, reinforces 
their persistence in the aquatic environment which can become harmful to the biota due to 
their toxic potential, turning them into compounds of emerging concern. The toxicity of CECs 
on aquatic life, such as fish, algae, daphnia and crustaceans were measured by calculating the 
RQ value for different compounds of emerging concern. Paracetamol presented the highest 
risk against daphnia and algae (1.075 and 1.284 respectively), on the other hand, caffeine RQ 
value was found to have the highest toxic influence on fish (1.89) and tetracycline with a RQ 
of 1.26 against algae, thus showing a severe threat to those species by those compounds. 
Crustaceans showed an overall better resistance against the selected CECs, however further 
investigations on CECs ecotoxicity potential with a wide range of aquatic biota should be 
established. 
Most of the conventional treatment techniques were not efficient in mitigate the CECs 
concentrations down to the limits stated by the international statutory guidelines. Overall 
average of CECs removal efficiency for ASP, CWs, SBR, etc., was found to be less than 70%. 
The combined treatment techniques such as MBR-RO, MBR-NF, MBR-AOP, etc., showed 
almost complete removal of CECs. Other new AOP technologies to remove CECs, such as the 
tube-in-tube membrane contactor have been showing promising results with potential for a 
scaling up to urban WWTP. Further research should be performed on the costs of the hybrid 
treatment processes and its optimization, allowing easy and feasible upscaling options. 
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