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Abstract 
Current state-of-the-art medical image segmentation methods require high quality 
datasets to obtain good performance. However, medical specialists often disagree 
on diagnosis, hence, datasets contain contradictory annotations. This, in turn, leads 
to difficulties in the optimization process of Deep Learning models and hinder 
performance. We propose a method to estimate uncertainty in Convolutional Neural 
Network (CNN) segmentation models, that makes the training of CNNs more robust 
to contradictory annotations. In this work, we model two types of uncertainty, 
heteroscedastic and epistemic, without adding any additional supervisory signal 
other than the ground-truth segmentation mask. As expected, the uncertainty is 
higher closer to vessel boundaries, and on top of thinner and less visible vessels 
where it is more likely for medical specialists to disagree. Therefore, our method is 
more suitable to learn from datasets created with heterogeneous annotators. We 
show that there is a correlation between the uncertainty estimated by our method 
and the disagreement in the segmentation provided by two different medical 
specialists. Furthermore, by explicitly modeling the uncertainty, the Intersection 
over Union of the segmentation network improves 5.7 percentage points. 
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1. Introduction 

Retinal vasculature provides information about many conditions including vision threatening 
diseases, such as Diabetic Retinopathy, and cardiovascular diseases, such as coronary artery 
disease (Nguyen and Wong 2009). A commonly used biomarker to diagnose these diseases is 
the Ratio between Arteriolar and Venular diameters (AVR) (Dashtbozorg, Mendonça, and 
Campilho 2013). Therefore, the task of segmenting the blood vessels in retinal images is an 
important first step towards automatically diagnosing these diseases. 

Current state-of-the-art blood vessel segmentation methods rely on Convolutional Neural 
Networks (CNNs) (Imran et al. 2019; Meyer et al. 2017; Meyer et al. 2018) which typically 
require large high-quality datasets to achieve best performance. The best performing 
methods (Meyer et al. 2017; Meyer et al. 2018) typically use a U-Net style architecture 
(Ronneberger, Fischer, and Brox 2015) to segment the input images. The U-Net consists of an 
encoder-decoder CNN, with skip connections between the encoder and the decoder layers, to 
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help preserve fine details from the input image in the output segmentation mask, such as the 
edges of the object of interest. 

 
Figure 1: We propose a system that segments blood vessels in eye fundus images. 

Additionally, the system models two types of uncertainty in the prediction: 
heteroscedastic and epistemic uncertainty 

However, medical doctors often disagree on diagnosis (Krause et al. 2018; Wanderley et al. 
2019) leading to inconsistent annotations that may hinder performance. For instance, in the 
case of Diabetic Retinopathy grading, specialists agree in only 71% of the images on one 
dataset with 406 eye fundus images. This problem may be even bigger for segmentation tasks, 
where each pixel of the image is annotated. For the case of a blood vessel segmentation task, 
2 different annotators agree in only 60% of the pixels that were labeled as containing blood 
vessels by any annotator (Lampert, Stumpf, and Gançarski 2016). This number can reduce 
drastically as the number of different annotators increases. In the task of segmenting fissures 
in high resolution images acquired by an unmanned aerial vehicle, 13 different annotators 
only agreed in 0.6979% of the pixels marked as fissures by any annotator (Lampert, Stumpf, 
and Gançarski 2016). 

To solve this issue, it is common to have images annotated by multiple doctors and then have 
a committee reach a consensus for each image, but this reduces the total size of the dataset, 
hence, data variability. One possible solution to this problem is to estimate the uncertainty in 
the model's predictions (Kendall and Gal 2017). Recently, uncertainty estimation in medical 
imaging has attracted much interest (Awate, Garg, and Jena 2019; Galdran et al. 2019; 
Garifullin, Lensu, and Uusitalo 2020; Tanno et al. 2017; Wang et al. 2019). 

These methods can be divided in two main approaches: domain knowledge and Bayesian 
approaches. Some methods pre-process the segmentation masks to include an "uncertain" 
class using domain knowledge. For instance, for the task of segmenting arteries and veins in 
retinal images, crossings in the vasculature and thin blood vessels can be labeled as uncertain 
(Galdran et al. 2019). However, most existing methods aim to estimate the uncertainty directly 
from data without any additional domain knowledge information. Some works model 
epistemic uncertainty through an approximate Bayesian inference by means of variational 
dropout (Wang et al. 2019). Other works model the heteroscedastic uncertainty by adding 
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noise to the predictions with an estimated diagonal covariance representing the intrinsic 
uncertainty (Tanno et al. 2017). 

In this work, we model both epistemic and heteroscedastic uncertainty, as shown in Figure 1, 
without adding any additional supervisory signal other than the ground-truth segmentation 
masks. The ground-truth is produced by a heterogeneous group of annotators and we show 
that our combined uncertainty correlates with the disagreement between annotators. 
Moreover, simply by explicitly modeling the uncertainty during training, we are able to 
improve the segmentation Intersection over Union (IoU) results by 5.7 percentage points. In 
summary, our contributions are as follow: 

 Accuracy: Segmentation results are improved by estimating uncertainty. 

 Second Opinion: We show that the combined uncertainty is correlated with the 
disagreement between doctors. 

 Explainable: The method estimated higher uncertainty near blood vessel edges and on 
top of thinner vessels. 

2. Method 

In this section, we will show how we segment blood vessels in retinal fundus images and how 
we estimate uncertainty. We will describe how to estimate two types of uncertainty, the 
epistemic and heteroscedastic uncertainties and, in the end, how to combine them, as shown 
in Figure 2. 

2.1. Blood vessel segmentation 

A U-Net (Ronneberger, Fischer, and Brox 2015) was used, which consists of an encoder-
decoder architecture with skip connections between the encoder and the decoder. The 
encoder contains 8 Convolutional Layers followed by the ReLU activation function and 
BatchNorm (Ioffe and Szegedy 2015). Max-Pool is used after every two of these Conv-ReLU-
BatchNorm blocks. For the decoder, we use 3 Conv-ReLU-BatchNorm blocks, with bilinear 
upsampling before each of them, followed by a Convolutional Layer with a single output unit 
corresponding to the predicted segmentation mask. The model was trained using Adam 
optimizer (Kingma and Ba 2014) with default parameters. 

The per-pixel binary cross-entropy loss is used to train the segmentation model f: 

𝐿𝑖 = −𝑦𝑖 log(𝑓(𝑥𝑖)) − (1 − 𝑦𝑖) log(1 − 𝑓(𝑥𝑖)), (1) 

where x is the input image, y is the ground-truth segmentation mask and i is the pixel index. 

We then minimize the mean of the per-pixel loss 
1

𝑁
∑ 𝐿𝑖

𝑁
𝑖 , where N is the number of pixels in 

image x. 

2.2. Epistemic uncertainty 

Epistemic uncertainty, also referred to as model uncertainty, accounts for the uncertainty in 
the model parameters. This type of uncertainty is related to the limited amount of information 
provided to the model and can be explained away given enough data. 

We use dropout variational inference (Gal and Ghahramani 2015) to approximate epistemic 
uncertainty. Dropout with p=10% is added after each ReLU and then, at test time, dropout is 
also applied in T stochastic forward passes. The epistemic uncertainty can be defined as the 
predictive variance: 

𝑢𝑖 =
1

𝑇
∑ (𝑓(𝑥𝑖 ; �̂�) − 𝐸 (𝑓(𝑥𝑖 ; �̂�)))

2
𝑇

, (2) 
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Figure 2: A U-net CNN f outputs a blood vessel segmentation mask 𝑓(𝑥𝑖) and 

heteroscedastic uncertainty 𝜎𝑖. The same U-net 𝑓 is run T times with dropout to 
compute the epistemic uncertainty 𝑢𝑖. Finally, 𝜎𝑖  and 𝑢𝑖  are combined into a single 

uncertainty mask U 

where �̂� are the model's parameters sampled from the Dropout distribution and 𝐸 (𝑓(𝑥𝑖; 𝜃)) 

is the predictive mean. This uncertainty is reduced when all parameter samples �̂� result in the 
same prediction. 

2.3. Heteroscedastic uncertainty 

Heteroscedastic uncertainty captures the observation noise in 𝑥𝑖  and can not be reduced by 
gathering more data. For instance, for the task of vessel segmentation, the heteroscedastic 
uncertainty should be high near badly defined blood vessel edges. To capture this type of 
uncertainty, we make our model predict the log variance 𝜎𝑖 and modify the loss function: 

𝐿𝑈 =
1

𝑁
∑ 𝑒−𝜎𝑖

𝑁

𝑖

𝐿𝑖 + 𝜎𝑖 . (3) 

By multiplying the binary cross-entropy loss by 𝑒−𝜎𝑖, the model is able to identify erroneous 
or ambiguous labels and ignore them. In order to avoid the degenerate solution of minimizing 
the loss by simply estimating high uncertainty in all pixels, we add the 𝜎𝑖 term. Therefore, the 
model is optimized to have low uncertainty in all predictions while, at the same time, to ignore 
labels where the model is likely to have high loss. We used the ELU activation function in the 
𝜎𝑖 estimation to prevent the model from predicting very large negative values. 

Finally, we combine the epistemic uncertainty and the heteroscedastic uncertainty. Before 
combining these two uncertainties we need to make sure they are in the same range, 
otherwise the uncertainty with larger range could have a bigger weight in the combined 
uncertainty. We normalize u and 𝜎 to have a minimum value of 0 and a maximum value of 1 

in the training set: 𝜇𝑛𝑜𝑟𝑚 =
𝜇− min

𝜇𝑖∈𝜇𝑡𝑟𝑎𝑖𝑛
𝜇𝑖

max
𝜇𝑖∈𝜇𝑡𝑟𝑎𝑖𝑛

𝜇𝑖
, 𝜎𝑛𝑜𝑟𝑚 =

𝜎− min
𝜎𝑖∈𝜎𝑡𝑟𝑎𝑖𝑛

𝜎𝑖

max
𝜎𝑖∈𝜎𝑡𝑟𝑎𝑖𝑛

𝜎𝑖
, where 𝜇𝑡𝑟𝑎𝑖𝑛 and 𝜎𝑡𝑟𝑎𝑖𝑛 are 

the sets containing all the epistemic and heteroscedastic uncertainties in the training set. 
Then, we average 𝜇𝑛𝑜𝑟𝑚 and 𝜎𝑛𝑜𝑟𝑚 to compute the final combined uncertainty 𝑈 =
 
𝜇𝑛𝑜𝑟𝑚 + 𝜎𝑛𝑜𝑟𝑚

2
. 
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3. Evaluation 

3.1. Dataset 

We evaluate our method on the publicly available DRIVE dataset (Staal et al. 2004). This 
dataset contains 40 images from different patients with 7 images containing signs of mild 
diabetic retinopathy. The dataset is equally divided intro train and test sets, with 20 images in 
each set. Furthermore, the test set was annotated by two different observers, while the train 
set contains a single ground-truth annotation. This dataset is still one of the most widely used 
for the blood vessel segmentation task (Imran et al. 2019) and, additionally, as it contains two 
different annotations for each test set image, it allows us to compare the uncertainty 
estimation with the disagreement between observers. The images are resized to 512x512px 
and random translation, scale, rotation and flip operations are performed as dataset 
augmentation. 

3.2. Segmentation results 

In order to evaluate the effects of modeling the epistemic and heteroscedastic uncertainties 
on our U-Net model, we start by training a baseline. The baseline model consists of the U-Net 
as described in section 2.1 and trained with binary cross-entropy. All our models were 
developed using PyTorch (Paszke et al. 2019). 

We compare our results with the baseline in Table 1 using three different metrics: Area Under 
the ROC Curve (AUC), Dice Coefficient and Intersection over Union (IoU). The ROC curve plots 
the sensitivity and specificity of the model at all classification thresholds and is a standard 
metric for classification models. The Dice Coefficient and IoU are two standard metrics for 
segmentation models. The Dice Coefficient doubles the intersection of the predicted and 
ground-truth segmentation masks and divides by the sum of the areas of the predicted and 
ground-truth masks. The IoU, as the name implies, divides the intersection of the predicted 
and ground-truth masks by the union of the two. 

By modeling both the epistemic and heteroscedastic uncertainties, we are able to improve 
the performance of the segmentation model in all 3 metrics. The performance improvement 
is more significant in the Dice Coefficient and IoU as they are more robust to class imbalance. 

Modeling both epistemic and heteroscedastic uncertainties is better than modeling each of 
them individually. However, both the epistemic and heteroscedastic versions perform better 
than the baseline in most metrics. 

 AUC Dice IoU 

U-Net 0.982 0.768 0.623 
+ Epistemic 0.983 0.800 0.667 
+ Heteroscedastic 0.977 0.796 0.661 
+ Combined 0.984 0.809 0.680 

Table 1: Blood Vessel Segmentation Results. Modeling epistemic and 
heteroscedastic uncertainty improves the segmentation performance on the Drive 

dataset for all metrics in evaluation 

3.3. Uncertainty evaluation 

In order to evaluate quantitatively our combined uncertainty, we compared our estimated 
uncertainty with the annotators disagreement. In this work we define disagreement between 
annotators as the absolute difference between the two annotations 𝑑 = |𝑦′ − 𝑦′′|. 

We show that there is some correlation between the estimated uncertainty and the 
annotators' disagreement in Figure 3. The model tends to estimate high uncertainty close to 
the boundaries of the blood vessels and on top of thin vessels, which is similar to the places 
where the annotators disagree. Furthermore, we can see that, in some situations, there is high 
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uncertainty in places where the model did not predict to have blood vessels. These results 
indicate that it could be possible to extract clinically relevant retinal biomarkers with 
associated uncertainty that correlates with the disagreement between specialists. 

 
Figure 3: Comparing the disagreement between annotators and the estimated 

uncertainty. There is more disagreement between annotators close to the 
boundaries of the blood vessels and thinner vessels. The estimated uncertainty 

displays the same behavior. We highlight interesting regions where the uncertainty 
is similar to the disagreement 

We evaluated quantitatively the similarity between the annotators' disagreement and the 
estimated uncertainty. For that, we treat the disagreement as ground-truth and compare each 
uncertainty map with the disagreement. The results are compiled in Table 2 and show that 
there is some correlation between the estimated uncertainties and the disagreement. 

 

Table 2: Comparing annotation disagreement with estimated uncertainty. We can 
see that there is some correlation between the annotators’ disagreement and the 

estimated uncertainty 

All estimated uncertainty maps are very similar to each other and, therefore, obtain very 
similar results when compared with the disagreement. The heteroscedastic uncertainty 
attributes higher uncertainty in the edges of the predicted blood vessels while the epistemic 
uncertainty may attribute higher uncertainty in regions where the segmentation model 
predicted to be background. 

 AUC Dice IoU 

Epistemic 0.924 0.351 0.212 
Heteroscedastic 0.927 0.378 0.233 
Combined 0.929 0.377 0.232 
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4. Conclusions 

We proposed a method to estimate uncertainty in eye fundus blood vessel segmentation. We 
modeled both heteroscedastic and epistemic uncertainty and then combined them into a 
single uncertainty estimation map. The resulting uncertainty correlates with the disagreement 
in annotations from specialists, which indicates that our method may act as a second opinion. 
Moreover, this method learns from heterogeneous annotators as it predicts which pixel 
annotations are most likely to be annotated differently by medical doctors and includes that 
information in the loss function. Therefore, it may be possible to eliminate the need of having 
multiple annotators labeling the same images, and discussing to reach a consensus, allowing 
the creation of larger and more variable datasets without hindering performance. 

In the future, we want to apply these ideas to multi-class segmentation problems, such as the 
artery-vein segmentation problem in eye fundus images. Additionally, we want to test the 
robustness of this method to different levels of noise. 
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