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Abstract 
The Set Covering Problem is a well-known NP-complete problem which we address 
in this work. Due to its combinatorial nature heuristic methods, namely 
neighbourhood-based meta-heuristics, were used. 
Based on the well-known algorithms GRASP, Simulated Annealing and Variable 
Neighbourhood Descend, along with a constructive heuristic based on a dynamic 
dispatching rule to generate initial feasible solutions, two approaches to the problem 
were formulated. The performance of both methods was assessed in 42 instances of 
the problem. Our best approach has an average deviation from the best-known 
solution of 0.23% and reached 0% for 26 instances under 40 minutes. 
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1. Introduction 

The Set Covering Problem (SCP) is a classic computer science problem shown to be NP-
complete in 1972 (Karp 1972). Originally, the problem was defined as: "given a finite family of 
sets and a positive integer k, is there a subfamily of sets with cardinality smaller than or equal 
to k and whose union is the same as the original family?”. 

The demonstration that this problem is NP-Complete ensures that, by computational 
complexity theory, there are no deterministic polynomial time algorithms that solve all 
instances of the problem unless the widely believed conjecture P≠NP is proven to be false 
(Fortnow 2009). 

When addressing this kind of problems some authors resort to exact algorithms. These focus 
on finding the optimal solution to the SCP problem, usually relying on branch-and-bound 
(Balas and Carrera 1996). However, due to this problem being NP-hard, the time taken by 
these algorithms can grow exponentially as the size of the problem increases, particularly in 
worst case scenarios. An alternative approach is to use approximate methods which find non-
optimal solutions but provide some guarantee of how close the solution is to optimality. 
Gomes et al. (2006) compared multiple approximation algorithms both in terms of their 
theoretical and empirical performance. Finally, there are heuristic algorithms which find 
solutions to the problem which are neither optimal nor present any guarantee of optimality. 
However, they run in acceptable time often with fairly good results (Beasley and Chu 1996; 
Yelbay, Birbil, and Bülbül 2014). In this work we resort to this last alternative. 

A variant of the SCP (Beasley 1987) was tackled. In this problem, each set has an associated 
cost. The objective is to minimize the sum of the costs associated with all sets in the selected 
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subfamily. It is easy to see that this is a generalization of the original SCP, as shown in section 
3. The formulation considered is not just of theoretical importance. In many different 
scenarios this problem can be of great practical use. Consider for instance the problem of 
setting up a facility for a certain activity. A set of tools need to be bought to perform several 
different specific tasks. Each tool can be used for a finite set of tasks. The problem of selecting 
which tools to buy so that all tasks can be performed while minimizing the cost is equivalent 
to the formulation hereby presented. Although this is just a potential example, concrete 
practical applications are known for the problem in areas like airline crew scheduling (Baker 
et al. 1979), location of emergency facilities (Revelle, Marks, and Liebman 1970), or routing 
problems (Foster and Ryan 1976). 

To address the SCP, we propose two neighbourhood-based metaheuristic algorithms. Both 
approaches share the same initial phase, where a constructive heuristic is used to obtain an 
initial feasible solution. With this starting point, both algorithms do local search considering a 
neighbourhood of feasible solutions. The approaches differ in the considered neighbourhood 
and in the process used to escape local optima. While the first uses a swap operation to 
generate new neighbours and Variable Neighbourhood Descend, the second uses set addition 
and removal with Simulated Annealing. 

The rest of the paper is organized as follows: section 2 frames the work in the context of 
previous research for the SCP problem, section 3 presents the problem in a formal way along 
with a detailed description of the developed methods. In section 4 we present our 
experiments and the obtained results. Finally, we present our main conclusions in the last 
section. 

2. Related Work 

Heuristics are non-optimal methods designed for a specific problem. While they do not 
guarantee optimality, they often provide satisfactory solutions. Metaheuristics are more 
general in the sense that they can be applied to many optimization problems. Due to this, two 
approaches to one problem can be different even if they use the same metaheuristic (Talbi 
2009, xvii). 

An important class of heuristic methods in the context of this work are constructive heuristics. 
These are greedy algorithms which start with an empty solution and iteratively assign values 
to the decision variables until a complete solution is generated. Although we do not aim at an 
exhaustive description of these methods, a review of these methods for the SCP problem was 
done by Crawford et al. (2018). 

Metaheuristics work by iteratively evaluating solutions in the search space. Importantly, they 
only search a very small subset of the search space, otherwise the amount of time required to 
run the algorithms would make them impractical. 

Metaheuristics can be divided in two groups: 1. Population-based and 2. neighbourhood-
based. While population based keep a population of solutions which continually explore the 
search space, neighbourhood-based have a single solution which is slightly adjusted at each 
iteration. There are several population-based metaheuristics that have been applied to the 
SCP problem, such as genetic algorithms (Aickelin 2002) and ant-colony optimization (Ren et 
al. 2010). 

In this work we focus on neighbourhood-based approaches based on three metaheuristics: 1. 
greedy randomized adaptative search procedure (GRASP) (Feo and Resende 1989); 2. 
Simulated Annealing (SA) (Kirkpatrick, Gelatt, and Vecchi 1983) and 3. Variable 
Neighbourhood Descend (VND) (Hansen, Mladenović, and Moreno Pérez 2010). Although 
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there are some approaches in the literature that make use the same metaheuristics to address 
the same problem our proposed approaches are original and thus, have never been evaluated. 

3. Methods 

3.1. Formal description of the problem 

In this work the following SCP variant was considered: 

 Given: 

  A set of elements, 𝑈(the universe) 

  A collection of subsets of 𝑈, 𝑆 

  A cost 𝑐𝑖associated with each element of 𝑆𝑖 

 Find the sub-collection of 𝑆, 𝑉 that minimizes: 

  ∑ 𝑐𝑖𝑆𝑖∈𝑉  

 Subject to: 

  ∪ 𝑉 = 𝑈 

Note that, if we set the cost of all sets to 1, we have the original SCP. In this formulation a 
solution for the problem is given by 𝑉, we say it is feasible if ∪ 𝑉 = 𝑈 and the objective 
function we want to minimize is ∑ 𝑐𝑖𝑆𝑖∈𝑉 . The notation used in the rest of the paper is 

consistent with the problem formulation stated above. 

3.2. Constructive heuristics 

The first step in both proposed approaches is to generate an initial feasible solution, with 
constructive heuristics, which will later be refined. The general idea of constructive heuristics 
is to start with an unfeasible solution and iteratively approximate it to a complete one. In this 
work 𝑉 is empty at the start, and, in each iteration, a single subset is added to our solution. 
The subset is chosen as the one that maximizes a certain criterion, which is evaluated in each 
iteration. This process is usually known as a dynamic dispatching rule. 

Two criteria were considered are: 

 Elements per Cost ratio (EC) - Ratio between new elements covered and the cost of 
the set. 

 Normalized Elements per Cost ratio (NEC) – Similar to EC but the new elements 
covered are weighted by the cost of the cheapest set containing that element. 

In Figures 1, 2 and 3 the pseudo code for the constructive heuristic and for both criteria is 
shown. Note that the complexity of both these algorithms is 𝑂(𝑛𝑒𝑙𝑒𝑚𝑠) as in each iteration 
one set that covers at least one element is added to the solution. In practice the cardinality of 
the final solution is often smaller than the number of elements to cover. Also, in each step, 
the NEC criterion is slightly more expensive due to requiring an additional operation. 

In this work a non-greedy version of the algorithm is also defined by introducing parameter α. 
In this version the selected subset is taken randomly from the α subsets with the highest value 
for the criterion. 
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Figure 1: Pseudo-code for the dynamic dispatching rule method 

 

 
Figure 2: Pseudo-code for the Elements per Cost criterion 

 

 
Figure 3: Pseudo-code for the Normalized Elements per Cost criterion 

 

3.3. Neighbourhood-based metaheuristics 

Neighbourhood-based approaches slightly change the current solution iteratively. The 
concept of neighbourhood can vary, but it consists on solutions close to the one being 
considered. The number of neighbours should be very small when compared to the number 
of feasible solutions in the search space. Otherwise finding neighbours would be a 
combinatorial problem on its own. 

Local search consists in, first, evaluating neighbours and then, moving the solution to a better 
neighbour. Local search can be done using a best-N approach where the solution is moved to 
the best neighbour or using a first-N where the solution is moved to the first neighbour that 
is better than the current solution. One can also consider intermediate approaches. While the 
best-N strategy finds better solutions in each iteration, the first-N introduces randomness in 
the algorithm while taking less time per iteration. 

By always selecting a better neighbour, the local search algorithm inevitably gets trapped in 
local optima, when all neighbours are worse than the current solution. This does not mean 
there are no better solutions in the search space, only that if there are, they are not in the 
considered neighbourhood structure. To avoid this, different methods can be considered 
which allow the solution to escape from an "all-worse" neighbourhood structure. In this work 
three were considered: GRASP, SA and VND. 
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3.4. Variable neighbourhood descent approach 

One way to escape local optima is by expanding the neighbourhood structure in hope of 
finding a better neighbour there. Variable Neighbourhood Descent (VND) is a variant of a 
bigger group of methods, Variable Neighbourhood Search, in which instead of one, a sequence 
of neighbouring structures is defined. In short, during VND, local search is performed in a 
neighbourhood structure. If a better solution is found the process starts again with that 
solution as the initial point and considering the first neighbourhood structure. Otherwise, the 
neighbourhood is expanded. 

3.4.1. Neighbourhood structures 

In the context of this work the first neighbourhood structure (N1)was defined as all possible 
𝑉’s which can be obtained by swapping one subset in the current solution by one or zero 
subsets not included in the current solution. The second neighbourhood structure (N2) is 
defined analogously, by swapping one or two subsets of the current solution by zero, one or 
two non-selected subsets. Notice that N2 contains N1. This is not a good practice since if N2 
is reached, N1 has already been searched without yielding a better solution. However, given 
the fact that the number of neighbours in N1 is usually very small compared to the number of 
neighbours in N2, the loss in performance is negligible, while allowing a simpler 
implementation. Further, more neighbourhood structures could be defined analogously, but 
they are unfeasible in practice, as the number of neighbours increases exponentially as the 
maximum number of sets in the swap increases. Notice that the inclusion of the empty set in 
the formulation of N1 and N2 (the operation allows a swap of 𝑥 sets by zero sets), ensures 
that the number of selected subsets is not invariant in the process and, more importantly, that 
redundancy elimination is done implicitly. 

3.4.2. Reducing the number of candidates 

Given the number of neighbours the algorithm evaluates for each run, a good selection of 
which subsets should be considered in N1 and N2 can drastically decrease the complexity of 
the algorithm. We specify here how neighbours were generated in such a way that the number 
of unfeasible or more expensive solutions generated and evaluated is minimized. 

Considering 𝐶𝑜𝑢𝑡 as the list of possible removals. In this list, each element can contain one or 
two sets, depending whether N1 or N2 is being considered. For N1, 𝐶𝑜𝑢𝑡 is equal to 𝑉. Any set 
can be taken out. For N2 the Cartesian-product between 𝐶𝑜𝑢𝑡 and itself is performed. This 
product yields elements which contain the same set duplicated. When this is the case, one of 
these elements is removed. It also returns two solutions for each combination (e.g. (𝑆1, 𝑆2) 
and (𝑆2, 𝑆1) would both be in 𝐶𝑜𝑢𝑡). One of these is also removed. Members in 𝐶𝑜𝑢𝑡 are 
ordered by the number of elements that will become uncovered if that member is selected. 
This way solutions where the sets removed lead to a feasible or close to feasible solution are 
evaluated first. After selecting a candidate to be taken out, 𝑐𝑜, a list of candidates which can 
potentially be added to the set, 𝐶𝑖𝑛, is generated. This is done also using the Cartesian-product 
but including the empty set. Subsets not present in 𝑉, which cover at least one element to be 
left uncovered by the removal of 𝑐𝑜, and which have an associated cost smaller than the sum 
of costs of all subsets in 𝑐𝑜 are considered. 

By removing redundancy in the generated 𝐶𝑜𝑢𝑡, ordering its elements according to how close 
the generated solution will be to feasibility, and generating 𝐶𝑖𝑛 with cheaper and relevant 
(which cover potentially uncovered elements) subsets, the number of evaluated solutions is 
drastically reduced, making the algorithm significantly more efficient. This is vital as it allows 
mixing VND with GRASP as shown later. 
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3.4.3. Best-N vs First-N 

As seen before the number of neighbours in N2 is exponentially bigger than in N1. Due to this 
a First-N approach was selected for N2. For N1 Best-N local search was selected. As shown in 
the next subsection for each instance of the problem, we propose to run this algorithm 
multiple times with different initial solutions. We consider that this source of diversification is 
enough to guaranty a good exploration of the search space, potentially decreasing the benefits 
of a First-N strategy in N1. 

3.4.4. GRASP and VND 

Greedy Randomized Adaptive Search Procedure (GRASP) is a well-known method to increase 
the diversification of a search algorithm. Typically, in neighbourhood-based approaches, a 
feasible solution is constructed and optimized with local search. One way to escape a local 
minimum is to run local search again using a different starting point. This is the logic behind 
GRASP: first, multiple feasible solutions are generated, and then, improved separately using a 
local search method. 

If we consider the VND method as our local search approach (even though two different 
neighbourhoods were used), running VND on different initial solutions is becomes very similar 
to GRASP. Given the fact that evaluating a N3 neighbourhood is unfeasible in practice, given a 
time constraint, we propose to start the VND search again using a different initial solution. 

 
Figure 4: Pseudo-code for the Variable Neighborhood Descend approach with 

GRASP 

3.5. Simulated Annealing 

Annealing is a well-known process in materials science. The main idea is that for some 
materials, a heating phase followed by a controlled cooling phase can alter the properties of 
the material, namely its ductility and its hardness. Applying a similar logic to the problem of 
SCP can allow iterative algorithms to escape local optima, by randomly jumping to a worse 
solution in the neighbourhood structure. The chance of this happening depends on how worse 
the new solution is compared to the current one and the current value of parameter 𝑇 (of 
temperature). 𝑇 usually decays exponentially. Due to the similarities with the physical process, 
this technique is called Simulated Annealing. In the version hereby described, the algorithm 
has a probability of moving of less than one when it finds a better solution, which is not the 
standard formulation. 
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3.5.1. Neighbourhood structure 

In this method the neighbourhood is generated by either adding or removing one set from 𝑉. 
Essentially, a random set is selected, 𝑆𝑖, and if 𝑆𝑖 ∈ 𝑉, the new solution is obtained by 
removing it, assuming the result is feasible. If 𝑆𝑖 ∉ 𝑉 then the new solution is obtained by 
adding 𝑆𝑖 to 𝑉. There are two reasons which can lead the algorithm to reject the generated 
solution: i) removing a set leads to an unfeasible solution; ii) based on the probabilistic 
approach the event does not occur. When this happens, the algorithm selects another random 
set. Pseudo-code for the proposed algorithm is shown in Figure 5. 

3.5.2. Chance of selecting a solution 

Given a current solution 𝑣𝑐  and a feasible neighbour 𝑣𝑛 the probability of the algorithm setting 
𝑣𝑐  to 𝑣𝑛 is given by Equation 1 if the solution is obtained by addition and Equation 2 if the 
solution is obtained by removal. 

𝑃(𝑉 ← 𝑉 ∪ {𝑆𝑖}) = 𝑒−𝐶𝑖/𝑇 (1) 

𝑃(𝑉 ← 𝑉 ∖ {𝑆𝑖}) = (1 − 𝑒−𝐶𝑖/𝑇) (2) 

3.5.3. Selecting values for 𝑻 and 𝜶 

Optimization requires two parameters: i) an initial value for 𝑇 and ii) the decay rate α. 

These parameters can greatly affect the cost of the final solution and there are no values that 
work for all instances of the problem. Optimal parameters might depend on the data, the 
neighbourhood structure or the objective function. In this subsection we present a heuristic 
method to determine good values for these variables depending on the considered instance. 

First an initial value for 𝑇 is fixed, 𝑇𝑚𝑎𝑥. It is easy to see that if this value is too high the 
objective function will greatly increase in the first iterations. If it is too low, the objective 
function will decrease rapidly. Both these phenomena are undesirable as they can lead to 
worse final solutions, when compared to the ones that could be obtained with a more careful 
parameter initialization. Additionally, for efficiency, we want to spend as much time as 
possible with a good value of 𝑇, during optimization. We propose to select 𝑇𝑚𝑎𝑥 so that the 
expected value of the objective function of the first iteration is equal to the starting solution. 
By noticing that in the first iteration either a set is added or removed, this expected value is 
given by Equation 3. Let 𝑣0 and 𝑣1 be the values of the objective funtion for the initial and 
after-first iteration solutions. Then: 

𝐸[𝑣0 − 𝑣1] =
1

|𝑉|
[ ∑ 𝑒−𝐶𝑖/𝑇

𝑆𝑖∉𝑉

× 𝐶𝑖 − ∑(1 − 𝑒−𝐶𝑖/𝑇)

𝑆𝑖∈𝑉

× 𝐶𝑖] (3) 

To obtain 𝑇𝑚𝑎𝑥 this function is evaluated in 𝑁 equally spaced points in the logarithmic space 
(assuming the function crosses zero in this range) and the point with a smaller absolute value 
is selected. Notice that in the above expression it is assumed that unfeasible solutions can be 
generated. In practise sets which its removal would lead to unfeasible solutions are not 
counted in the mean. Then a value for 𝑇𝑚𝑖𝑛, the temperature in the last iteration, is selected 
such that the probability of adding/removing the cheapest set is equal to 5%. We argue that 
this is a good point to end because a better solution is being selected 19 out of each 20 feasible 
neighbours, which is very close to simple local search. The computation of 𝛼 is done based on 
the selected number of iterations between 𝑇𝑚𝑎𝑥 and 𝑇𝑚𝑖𝑛. Using this method, the only 
parameter that needs to be set is the number of updates. Notice that an initial solution with 
no redundancy would lead to a very low 𝑇𝑚𝑎𝑥, as the expected value for the variation of the 
objective function would be positive. As such, this heuristic method is not suited for initial 
solutions which are already locally optimized. 
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Figure 5: Pseudo-code for the Simmulated Annealing stategy 

 

 
Figure 6: Objective function for the simulated annealing method using the proposed heuristic to 

find and initial 𝑇𝑚𝑎𝑥  and α. As shown in the image, initially the objective function oscilates around 
the same initial value (260) instead of a quick rise or fall 

4. Experimental Work 

4.1. Instances of the problem 

In total 42 instances of the SCP were considered in order to evaluate the performance of the 
proposed methods. These instances have previously been used by other authors (Beasley 
1987) and are available online (Beasley, n.d.). They can be divided in seven groups of problems 
with similar statistics. The statistics for each group are depicted in Table 1. 

 

 

 

  



Two Neighbourhood-based Approaches for the Set Covering Problem 
Eduardo Castro 

U.Porto Journal of Engineering, 5:1 (2019) 1-15 9 

 Set Cardinality Element Minimal Cost 

Ins type Opt.cost N_sets N_elems Min Mean Max Min Mean Max 

4 519.63 1000 200 1.00 3.99 10.63 1.00 5.49 35.00 

5 256.33 2000 200 1.00 3.98 11.00 1.00 2.83 14.22 

6 144.20 1000 200 2.20 9.91 19.00 1.00 2.43 12.60 

A 241.40 3000 300 1.00 6.03 16.80 1.00 2.23 10.80 

B 75.20 3000 300 4.00 14.96 29.00 1.00 1.31 4.40 

C 224.60 4000 400 1.00 7.99 19.80 1.00 1.82 9.60 

d 64.20 4000 400 7.20 20.03 37.00 1.00 1.11 3.60 

Table 1: Statistics for each group of instances. The values are averages across all instances of each 
type. Set cardinality is the number of elements in a subset. Element minimal cost is the cost of the 

cheapest subset containing that element 

All experiments were run on a Quad-Core Intel® Core™ i7-6700K CPU @ 4.00GHz computer 
with 64 GB of RAM memory. Only one CPU core was used in all experiments. 

4.2. Construction phase 

To generate initial feasible solutions, the proposed constructive heuristic algorithm using the 
EC and NEC criteria was used. A comparison per instance type was made between the two, 
while fixing the parameter α as 1. In this comparison the same behaviour, shown on Figure 7 
(left), was observed in almost all instances. The NEC criteria seems to be a less greedy 
approach as it considers more expensive elements first, with a faster cost increase in initial 
iterations, while leaving cheaper elements to be covered later. For most instances this 
criterion lead to cheaper solutions with a smaller number of subsets, which reduces the 
number of iterations needed to find a feasible solution. This reduction compensates for the 
added computational cost of weighting the elements, as both algorithms took around the 
same time to find solutions for all instances. 

In all 42 instances only two solutions had a higher cost with the NEC criteria and only one had 
higher cardinality. The benefits of using NEC criteria for each instance type are shown in Table 
2. 

As shown later, in some cases it is beneficial to use α > 1 to increase how diverse the solutions 
found by the constructive heuristic are. In Figure 7 (right) the distribution of the cost for 100 
solutions obtained using the NEC criteria for different values of α is shown. As expected, as α 
increases, the distribution becomes more disperse and the mean solution has a higher cost. 
However, by following a less-greedy approach, better solutions than the one obtained with 
the deterministic approach (α = 1) can occasionally be found. 

 

 Solution cost reduction Solution cardinality reduction 

Inst type Min mean max min mean max 

4 2.3% 5.3% 7.9% 4.3% 11.1% 16.5% 

5 3.9% 5.7% 7.3% 8.1% 11.3% 13.9% 

6 3.7% 5.7% 8.1% 4.4% 10.1% 15.2% 

A 5.7% 6.8% 7.7% 10.5% 12.5% 15.9% 

B -1.2% 5.0% 9.8% 0.0% 6.4% 12.0% 

C 2.6% 5.2% 9.1% 6.0% 8.5% 15.7% 

D -4.3% 3.5% 7.2% -4.3% 4.2% 9.4% 

Table 2: Solution Cost and Cardinality reduction due to the use of the NEC criterion 
instead of the EC 
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Figure 7: Left - Comparison between EC and NEC criteria on the first instance of group 4. The red line 
indicates the iteration in which NEC found a feasible solution while EC is still running. This behaviour 

was observed in almost all instances. Right - Distribution of the objective function value for 100 
solutions obtained for each different value of α. If we can afford to run the algorithm multiple times 

a non-greedy approach is likely to yield a better final solution 

4.3. Variable neighbourhood descent with GRASP 

The proposed VND method requires a starting feasible solution which is obtained by the 
constructive heuristic method. For this the NEC criteria was used as in most cases it led to 
better solutions using a less-greedy approach. Selecting a value for parameter α is of major 
importance, as it will control how diverse our initial solutions are. This selection is highly 
related to the time available to perform optimization. If the available time only allows the 
analysis of one solution, α = 1 should probably be selected while if infinite time is available, 
all possible initial solutions should be analysed. 

In the scope of this work it would be unfeasible to optimize this value for all instances. Due to 
this a small experiment was performed to better understand the impact of α for the first 
instance of the problem. We run the algorithm 100 times for different values of α. Figure 8 is 
a 2-dimensional representation of the final solutions, obtained with Latent Semantic Analysis 
(Dumais 2004). In the representation, it is shown that as α increases the spreading of the final 
solutions also increases. In other words, they become more diverse. In this experiment, the 
minimum obtained cost was 514 for α ∈ {1,2}, 512 (best known solution) for α = 3 and 513 
for α = 4. Given these two insights, and because we are estimating to run the algorithm a few 
hundreds or thousands of times for each instance, α = 3 was selected. Interestingly, 
performing the same experiment with 1000 solutions yielded the best-known solution for all 
values of α except 1, the greediest approach. 
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Figure 8: Distribution of feasible solutions in the search space obtained using the NEC criterion for 

different values of α. This representation was obtained by running the algorithm 100 times for each 
value of α and applying dimentionality reduction on the solutions found using Latent Semantic Analysis 

For each instance the algorithm was run for one hour. Whenever VND could not find a better 
solution in neighbourhoods N1 and N2 a new solution was constructed and optimized. Due to 
the careful selection of candidates explained in subsection 3.4.2, searching N1 and N2 was 
very fast, with the algorithm taking less than 1 second to analyse the current neighbourhood. 
We tried to consider N3 but in all cases tested the neighbourhood could not be completely 
searched in less than an hour and it never found a better feasible solution in that time frame. 
This is due to the combinatorial nature of the neighbourhood structure selected. The average 
deviation from the best-known solutions per instance type is shown in Table 3. 

Instance type 5 min. 10 min. 30 min. 60 min. 

4 0.42% 0.37% 0.30% 0.28% 

5 0.55% 0.35% 0.09% 0.09% 

6 0.41% 0.41% 0.00% 0.00% 

A 0.66% 0.66% 0.66% 0.49% 

B 0.00% 0.00% 0.00% 0.00% 

C 1.25% 1.16% 0.80% 0.80% 

D 0.86% 0.86% 0.30% 0.00% 

Table 3: Mean deviation from the best-known solution per instance type for the 
VND algorithm 

By analysing the results, we can see that for all instances of type 6, b and d, the proposed 
approach finds the best-known solution under 1 hour. These correspond to instances with 
subsets of high cardinality. Instance type c seems to be the hardest at least for this algorithm. 
In total 17 best-known solutions were found under 5 minutes and 26 under 1 hour. The 
average deviation from the best-known solution was 0.58% for a time frame of 5 minutes and 
0.23% for a time frame of 60 minutes. Importantly, all best solutions were found under 40 
minutes as shown in Figure 9, revealing that the benefit of running the algorithm for more 
than this time frame was none. A possible cause for this is that the algorithm might be 
repeatedly optimizing the same solutions. For the first instance, the ratio of unique to total 
solutions was computed for the constructive heuristic and for the VND approaches. We found 
only 84% were unique for the former and only 40% were unique for the latter. A method to 
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manage optimization with memory, in order to avoid evaluating already computed solutions, 
could be beneficial in this case. Alternatively, a greater source of diversification could also lead 
to improved results. 

4.4. Simulated Annealing 

The proposed SA method also requires a feasible initial solution. Taking in consideration that 
simulated annealing is more random than the VND approach and that we expect it to run less 
times in a one-hour time frame, the value of α should be smaller than 3. As such we decided 
to perform all experiments twice, using α = 1 and α = 2. We called this methods SA1 and 
SA2. 

Additionally, for the SA algorithm we need to specify the number of updates in one run of the 
algorithm. We selected this so that optimization takes approximately 5 minutes. Obtaining the 
value for the number of updates was done by trial and error on the first instance of each type. 
If the number of updates led to the algorithm running between 4 and 6 minutes the value was 
considered acceptable. Each algorithm was run 12 times (approximately 1 hour). Results are 
depicted in Table 4 for SA1 and Table 5 for SA2. 

Both SA1 and SA2 can find all best-known solutions for instances of type b and d. For these 
two types, VND was also able to find all best-known solutions, suggesting these instances are 
less challenging than the others. As shown in Figure 9. The SA1 approach seems to be better 
for a single run while SA2 is superior when we run the algorithm multiple times. By means of 
paired T-test we determined that this difference was not statistically significant for any 
number of runs for a significance level of 5%. For SA1 with a time frame of approximately 5 
minutes the average deviation from best known solutions was 1.97% with this value being 0% 
for 9 instances, while for SA2 these values being 2.17% and 4. For approximately 60 minutes 
this values change to 1.23% and 15 for SA1 and 0.70% and 17 for SA2. 

Instance type 5 min. 10 min. 30 min. 60 min. 

4 1.79% 1.27% 1.15% 1.15% 

5 1.78% 1.46% 1.24% 1.16% 

6 3.23% 2.94% 2.94% 2.94% 

A 2.92% 2.43% 2.27% 1.93% 

B 0.51% 0.51% 0.25% 0.00% 

C 2.91% 2.00% 1.57% 1.57% 

D 0.88% 0.56% 0.00% 0.00% 

Table 4: Mean deviation from the best-known solution per instance type for the 
SA1 algorithm 

 

Instance type 5 min. 10 min. 30 min. 60 min. 

4 1.48% 0.99% 0.60% 0.37% 

5 2.07% 1.53% 1.06% 1.06% 

6 2.84% 1.68% 1.18% 1.06% 

A 2.22% 1.50% 1.25% 1.25% 

B 1.90% 0.52% 0.00% 0.00% 

C 2.81% 1.89% 1.16% 1.06% 

D 2.39% 0.58% 0.00% 0.00% 

Table 5: Mean deviation from the best-known solution per instance type for the 
SA2 algorithm 
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4.5. Comparison between the two approaches 

In this subsection we compare the results between both approaches one using SA and the 
other VND. A comparison in terms of average deviation from the best-known solution and the 
number of best-known solutions found can be found in Figure 9. 

 
Figure 9: Performance metrics for each of the considered approaches in function of 

running time. Top - Average deviation from best known solution in percentage. 
Bottom - Number of best known solutions found, in a universe of 42 instances 

The VND approach is superior in both metrics regardless of setting α to 1 or 2 in the second 
approach. This difference was statistically significant for all time frames considered, using a 
paired T-test with a significance level of 1%. The difference in performance between the two 
methods can be explained by multiple factors. The VND approach has a very efficient 
intensification phase which takes relatively little time, due to the considered neighbours 
having a high probability of being feasible and better than the current solution. This efficiency 
in generating new solutions allows us to run the algorithm many times in a short time frame 
for different initial solutions, similar to GRASP. 

In the case of SA, we did not optimize the parameter which refers to the number of updates, 
we simply tried to have a 5-minute running interval. For instance, a better strategy could be 
to run the algorithm for 1 minute 5 times. In other words, we do not know if the cooling rate 
is being unnecessarily slow or too fast. A better estimation of the initial Temperature, cooling 
rate and number of iterations could lead us to better results. Further, the neighbourhood of 
the SA algorithm is different from the VND one and so, the solutions obtained might benefit 
from a post-processing VND search. 

5. Conclusion 

In this work we considered a variant of the SCP problem and designed two neighbourhood-
based approaches to address it. Both approaches work on the space of feasible solutions given 
an initial starting point obtained by a constructive method. The first uses Variable 
Neighbourhood Descent, with an efficient method to generate new solutions which allows the 
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algorithm to run relatively fast. Due to this property, given a time frame we can run it multiple 
times, similarly to the GRASP method. The second approach is based on Simulated Annealing. 
We propose a simple method to select initial parameters, based on the expected value of the 
objective function. The VND approach was superior both in terms of average deviation from 
best known solution, with 0.23%, and number of best solutions found, with 26, for a time 
frame of 40 minutes. We argue that this difference in performance is mainly related with how 
time-efficient the first solution is compared to the second. The two approaches could be 
further improved by trying to understand in which instances their solutions are not optimal. 
Additionally, a method to avoid evaluating the same initial solution twice could reduce the 
time to reach an optimal solution and increase diversification. Future work should aim in this 
direction. 
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