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 Partial shading is one type of fault where photovoltaic panels cast 
shadows between each other, reducing their production and 
hastening their ageing. 
In this paper, we document and describe two distinct Machine 
Learning models that aim to identify and assess the impact of 
partial shading in a real case study. These algorithms recognise 
similarities and patterns using expected and measured power 
data. The predicted power is calculated using the measured panel 
irradiance, current, and voltage using a photovoltaic panel electric 
circuit model. The first Machine Learning model employs K-means 
clustering to analyse the differences between expected and 
measured power, grouping data based on these deviations. The 
second Machine Learning model leverages the outputs of the K-
means model as labels for a Long Short-Term Memory neural 
network, which classifies periods of partial shading. Experimental 
data from both models are presented, with the K-means model 
achieving a closer approximation to the reference values. 
However, the Long Short-Term Memory model demonstrated 
flexibility and scalability without requiring prior dataset 
knowledge from the end user. 

1. Introduction 
The need for clean and renewable energy has drawn attention, mainly due to the climate crisis 
and economic interest in solar energy, thus attracting, in recent decades, the scientific 
community's attention to this subject (Polman et al. 2016). Therefore, over the last few 
decades, monitoring tools have been designed to guarantee standardised indicators for 
monitoring and maintaining photovoltaic energy (PV) generation systems. These tools were 
designed to be cheap and automated and can help avoid the average 20% energy losses that 
photovoltaic systems experience (Ortega et al. 2017), (Li et al. 2021). Given the large volumes 
of data that PV monitoring systems can generate, several Machine Learning (ML) based 
algorithms for dealing with these systems can be found in the literature (Zsiborács et al. 2021), 
(De Benedetti et al. 2018), (Hopwood et al. 2020), (Ibrahim et al. 2022). These automated 
applications are of great interest to help operators of these systems in the processing of big 
data, as they can allow the detection of anomalies in PV power plants that can lead to poor 
performance or even cause damage to equipment.  
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For example, at the plant under study in the south of Portugal, there was a 20% loss in energy 
production in a single day due to partial shading of the photovoltaic modules. Such shading 
can be seen in Figure 1. 

 
Figure 1: PV module shaded by other modules 

According to (Ortega et al. 2017), several factors, such as dust accumulation or cracked panels, 
can lead to failures in PV modules, yielding a lower revenue due to loss of productivity. The 
three performance indicators for a PV system presented here are final yield (𝑌𝑌𝐹𝐹), reference 
yield (𝑌𝑌𝑅𝑅) and performance ratio (PR). The PR is the ratio between 𝑌𝑌𝐹𝐹 and 𝑌𝑌𝑅𝑅.  𝑌𝑌𝐹𝐹 is calculated 
by dividing the energy delivered to the load by the rated output power. 𝑌𝑌𝑅𝑅 is the energy 
available to the load during the defined period. During the engineering phase of a PV power 
plant, when choosing the array row pitch or distance between rows of modules, a trade-off 
must be considered between the produced energy per land area (𝑘𝑘𝑘𝑘ℎ/𝑚𝑚2) and the 
production per rated kilowatt (𝑘𝑘𝑘𝑘ℎ/𝑘𝑘𝑘𝑘). Increasing the produced energy per land area 
(𝑘𝑘𝑘𝑘ℎ/𝑚𝑚2) might lower the production per rated kilowatt (𝑘𝑘𝑘𝑘ℎ/𝑘𝑘𝑘𝑘), due to losing energy 
for partial shading. Reducing the production per rated kilowatt will lower the PR (Deline et al. 
2014). When clients commission a PV power plant, they usually demand more energy 
production per land area, overlooking production per rated kilowatt. It is also common for 
clients and Engineering, Procurement and Construction (EPC) companies to have established 
PR values in their maintenance contracts. The EPC company may face monetary penalties 
when power plants perform below those PR values. However, some circumstances can 
exempt the EPC company from such penalties. The problem with partial shading losses is that 
they are hard to explain to clients, and the issue arises due to client demands during the PV 
field's conception phase. When clients face significant losses and a lower PR, they demand 
explanations. One way to explain shading losses is to provide an on-site picture, such as Figure 
1, and present estimates of the loss values. These explanations are often not well received 
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and are met with scepticism. Another source of additional expenses is maintenance routines 
issued to search for correct these losses. Given that shading losses exist by design, these 
routines exist only per obligation and are, therefore, wasteful of resources and capital. 
To identify and evaluate the impact of partial shading in a real case study, this work explores 
two different methodologies for a photovoltaic plant in southern Portugal. These two 
approaches can obtain and process factory source data and identify periods of partial panel 
shading in the monthly production of a string. Furthermore, they can evaluate the losses 
associated with these periods. The first model is based on a K-Means algorithm, proposed 
independently by several different researchers (Steinhaus 1957), (MacQueen 1967) and (Lloyd 
1982). The second model is based on Long Short-Term Memory Neural Networks (LSTM), first 
proposed by (Hochreiter and Schmidhuber 1997). These models will be discussed in more 
detail in Chapter 2. 

2. State of the Art 
The potential for ML applications, related to the development of tools capable of contributing 
to the progress of advanced systems associated with renewable energy, is virtually unlimited. 
Therefore, numerous players, in this sector, are exploring inventive solutions to increase the 
efficiency of their systems through fault identification (Li et al. 2021). According to (Tina et al. 
2021), common issues in PV systems can be automatically identified through ML approaches, 
primarily employing three distinct methodologies. Firstly, there is the analysis of string/panel 
current and/or voltage, including measurements at the inverter, exploiting external factors 
such as environmental variables. This is often achieved through established ML methods like 
Artificial Neural Networks (ANN), Fuzzy Logic (FL), Decision Tree (DT), and Random Forest (RF) 
algorithms. The second approach involves image analysis, predominantly applying infrared 
(IFR) images captured by Unmanned Aerial Vehicles (UAVs). Deep Learning (DL), particularly 
with various Convolutional Neural Networks (CNNs) types, has proven effective in this context. 
The third methodology revolves around clustering-based techniques that detect anomalies 
using unlabelled data. Key methods encompass k-nearest Neighbour (kNN), one-class Support 
Vector Machine (1-SVM), as well as more recent algorithms such as Isolation Forest (IS) or 
Local Outlier Factor (LOF).  Within the literature, the predominant focus is centred around 
four categories of failures in PV systems: short circuit (SC), open circuit (OC), partial shading 
(PS), and abnormal ageing. (De Benedetti et al. 2018) propose an algorithm that can predict 
equipment faults several days or weeks before they occur. To achieve this, an ANN estimates 
the power output by simulating the behaviour of the panels, plus inverters groups, for the 
current conditions. The inverters will communicate their output in real-time, which is then 
compared to the simulation values. If the growing gap between production and simulation is 
a trend, adequate maintenance procedures are issued. An approach for unsupervised fault 
detection has been proposed by (Harrou et al. 2019). This approach combines the benefits of 
model-based techniques with the classification capacity of clustering algorithms, such as one-
class SVM. The approach uses the one-diode-based simulation model to describe the nominal 
behaviour of a PV array by using real environmental measurements as inputs. It then applies 
one-class SVM to the generated residuals from the simulation model to detect faults. Another 
approach was presented by (Hopwood et al. 2020) in which three neural network 
architectures, 1D Convolutional Neural Networks, Single Headed Long Short Term Memory 
(LSTM) and multi-headed LSTM, have their performance in anomaly detection tested. These 
algorithms must be able to detect anomalies and classify Current versus Voltage (IV) curves 
from collected data into baseline/normal, partially soiled and cracked. The authors found that 
multi-headed LSTM and 1D CNN architectures produced accuracies greater than 99 % on 
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average, the best of the three. While 1D CNN was marginally more accurate, multi-headed 
LSTM took half the time to train. Three machine-learning schemes were also tested by 
(Ibrahim et al. 2022). Auto Encoder LSTM (AE-LSTM), Facebook-Prophet and Isolation Forrest 
were used to evaluate and distinguish healthy from abnormal PV system behaviour. It was 
observed that only AE-LSTM correctly identified all the anomalies and the healthy signal. In 
contrast, the other two models identified the anomalies but labelled positive points as 
anomalies. 

3. Methodologies and Implementation 
The previously mentioned case study is a state-of-the-art PV power plant in southern Portugal, 
equipped with DC/AC inverters capable of recording historical data, which is then used for 
monitoring purposes. These measurements are taken every ten minutes, with each inverter 
registering current and voltage data. The local irradiance and temperature inside and outside 
solar cells are registered at the plant's weather station. When developing the models, the first 
data analysis phase consisted of understanding and processing said data, identifying patterns 
and translating it into a format that could be later used in ML applications. During this phase, 
it was necessary to model the system's expected power to calculate the difference between 
expected and measured power. This difference would then be used as input for the models. 
This analysis would shape how the models acquire the data, which will be reported in this 
chapter. The second phase was the conception of the algorithms themselves and the usage of 
the data processed in phase one. The K-Means-based approach was developed with MatLab 
(MATLAB 2024). The LSTM-based approach was developed with Python in VS Code (Rossum 
and Drake 2010) and visualised with MatLab. The algorithms and the challenges met during 
their development will be discussed in sections 2.1 and 2.2. The real datasets from the case-
study plant were used in the data analysis phase. The available data was recorded by two 
inverters from areas with different slopes. The data was recorded during July of 2023 and 
January of 2024.  When analysing and pre-processing the datasets, it became apparent that 
there were instances when the measured irradiance would be zero while the inverters still 
registered power production. Likewise, zero output in the inverters with irradiance being 
registered also happened. The distance between the inverters and the weather station means 
clouds could shade them at different intervals. Equipment faults could also cause this 
phenomenon.  
To model the expected power production without partial shading, Equation 1 was employed: 

𝑃𝑃𝑒𝑒𝑒𝑒𝑒𝑒 = 𝑛𝑛 𝑃𝑃𝑚𝑚𝑚𝑚𝑚𝑚⋅𝐼𝐼
𝐼𝐼𝑆𝑆𝑆𝑆𝑆𝑆

⋅ 100 + CoefVoc⋅(T−TSTC)
100

                                             (1) 

This equation based on an equation found in (Xydis 2013), calculates the expected power 
output, 𝑃𝑃𝑒𝑒𝑒𝑒𝑒𝑒, of a PV system by considering the number of panels (𝑛𝑛), the maximum power 
output of each panel under standard conditions (𝑃𝑃𝑚𝑚𝑚𝑚𝑒𝑒), the actual irradiance (𝐼𝐼), temperature 
conditions (𝑇𝑇), and the temperature coefficient of the open circuit voltage (𝐶𝐶𝐶𝐶𝐶𝐶𝑓𝑓𝑉𝑉𝑉𝑉𝑉𝑉). The 
adjustments for irradiance and temperature ensure that the expected power output reflects 
the real operating conditions rather than the Standard Test Conditions (STC). STC typically 
means an irradiance (𝐼𝐼𝑆𝑆𝑆𝑆𝑆𝑆) of 1000 𝑘𝑘/𝑚𝑚² and a cell temperature (𝑇𝑇𝑆𝑆𝑆𝑆𝑆𝑆) of 25°C. The 𝑃𝑃𝑚𝑚𝑚𝑚𝑒𝑒, 
𝐼𝐼𝑆𝑆𝑆𝑆𝑆𝑆, 𝑇𝑇𝑆𝑆𝑆𝑆𝑆𝑆  and 𝐶𝐶𝐶𝐶𝐶𝐶𝑓𝑓𝑉𝑉𝑉𝑉𝑉𝑉 values were taken from the solar panel datasheet (Longi). After 
calculating the expected power, it was possible to compare the results with the measured 
power, as can be seen, for two different days in Figure 2. 
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Figure 2: Measured vs Expected Power for string 2 on days 10 (top) and 23 

(bottom) in January 

Figure 2 shows a noticeable gap between the expected and measured power from 
approximately 3 to 5 pm over the two days. This phenomenon was recognised for this string 
in 15 of the 31 days in the month. The other strings exhibited similar shading profiles.  
It was then calculated and plotted this difference between the measured and expected power 
values to convert this data into a convenient format for the models.  
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Figure 3: Difference between Expected and Measured Power: Day 10, string 2. Blue 
bars represent higher Measured than Expected Power. Red bars represent higher 

Expected than Measured Power.  

The previously mentioned gap between the expected and measured power on day 10 
becomes evident in the graph of Figure 3.  

4.  Methodologies - K-Means 
After performing feature engineering on the data, we began developing the algorithms, 
particularly by computing the difference between expected and actual power. 
A first tentative version of the K-Means approach was made with Python in VS-Code. However, 
the time-series nature of the data proved to be challenging. The algorithm performed 
clustering based on the proximity of the timestamps as a sequence, prioritising the standard 
error value and the error's periodicity to a lesser extent. nTo try to solve this problem, the 
data was converted into a matrix and plotted in a 3-D mesh with MatLab, as seen in the 
example for string 15 in Figure 4. 
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Figure 4: Difference between expected and measured power in the month of 
January for string 15 (TOP: 3D Perspective View of Surface Plot, BOTTOM: Top-

down View of 3D Surface Plot) 

Within the depicted diagram Figure 4, it is observable that the losses occurring between 15:00 
and 17:00 are consistent, suggesting that these shading losses can be attributed to the design 
of the plant, as anticipated. The values along the Z-axis have been inverted for improved clarity 
and interpretation of the outcomes. The K-Means algorithm was applied to the string. The 
results can be seen in Figure 5. 

 
Figure 5: K-means clustering applied to the loss profile of string 15 in January (TOP: 
3D Perspective View of Surface Plot, BOTTOM: Top-down View of 3D Surface Plot) 

Each color in the graph indicates a different cluster, with light blue, cluster 6, belonging to 
partially shaded timestamps. Table 1 shows each cluster's total power in 𝑘𝑘𝑘𝑘 in the column 
Total Power, and the number of timestamps belonging to each cluster in the column Count. 
The asterisk (*) indicates that the values are contained in the time interval between 15:00 and 
18:00. According to this model, this string lost in January, was 46.6 𝑘𝑘𝑘𝑘. 
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Cluster Total Power in kW Timestamp Count Total Power * Timestamp Count * 
1 -234.2 560 -49.9 135 
2 -71.2 24 -12.2 4 
3 -68.0 1390 -33.3 387 
4 -286.8 313 -5.0 5 
5 15.6 4 0.0 0 
6 53.8 65 46.6 58 

Table 1: Total power and timestamp count per cluster for string 15 in January. 

This model could group the timestamps, according to their similarity, by their power 
difference value, time of day and day of the month. Despite the model correctly identifying 
partially shaded periods, there were also false positives. These can be easily found in Figure 
5, as there are light blue clusters before 15:00. Since no labelled data is available for this case, 
verifying false positives after 15:00 is impossible. Developing this model allowed us to confirm 
one of the most well-known disadvantages of K-means clustering: inputting the total number 
of clusters before the clustering occurs, which requires trial and error determination of this 
number and previous knowledge of the data set.   
4.1. Methodologies - LSTM 
From the previously conducted literature research, LSTM neural networks consistently had 
the best results out of several ML models. Using the PyTorch framework (Paszke et al. 2019), 
an LSTM NN model was developed and tested in Python for the second part of our 
methodology. 
Unlike the previously implemented unsupervised model, the biggest challenge faced when 
developing this supervised ML algorithm was the need for labelled data. To solve this problem, 
the first developed model was used to generate labels. In the results, relating to string 7, the 
labels for all timestamps were converted to 0, except for the ones between 15:00 and 18:00. 
All labels different from 6 were also converted to 0 to have only two classes and those with 
values equal to 6 were changed to 1. Class 0 meant the timestamp was not part of a partially 
shaded period, and class 1 meant the time stamp was included in a shaded period. Neural 
Networks do not favor unbalanced data sets when training (unbalanced data sets are those 
where some classes have disproportionally higher expression than the rest). Since the partial 
shading affected periods are contained between 15:00 and 18:00, the data from strings 7, 2 
and 8 were filtered accordingly. The matrix relative to a string's monthly production had 
dimensions 31 by 76. To achieve this shape, the 25 by 31 matrices that resulted from filtering 
were concatenated and padded.  It was then necessary to define the LSTM model architecture. 
According to (De Benedetti et al. 2018), it is general knowledge that using a more 
comprehensive hidden layer instead of several hidden layers diminishes the complexity of the 
model and processing times. The example in this work was used as a first basis to determine 
the batch size, number of neurons, and learning rate. These values were then tuned through 
a trial-and-error process, validated by comparisons with the K-means model, and visual 
analysis of the resulting graphs. In graph analysis, the following features were favourably 
weighted towards the architecture: clearly defined shaded periods and correct attribution of 
class probability to the timestamps to shaded periods, with a higher probability of class 0 for 
non-shaded periods and a lower probability of class 0 for shaded periods. Class 0 was chosen 
for data visualisation out of convenience. When defining the batch size, there was a trade-off 
between variety in results and consistency, with smaller batch sizes supporting the first and 
larger sizes favouring the latter. Iterations were made with the batch size ranging from 1 to 
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64. The size that better aligned with the required features and offered the best results was 
32. The exact process was followed to determine the number of neurons and learning rate. 
The neurons were incremented in steps of 1 from 1 to 20. The optimal solution that did not 
lead to under or overfitting while clearly defining shaded periods was 4 neurons. The learning 
rate was incremented from 0.001 to 0.01 in steps of 0.001, with the final value for the model 
being 0.008.  Given the random initialisation of the weights and the stochastic nature of 
training in neural networks, this architecture produced different models for each training 
iteration for string 15's data set. Figure 6 and Table 2 show the resulting graphs and recorded 
values for the model that better satisfied the previously established guidelines. Once again, 
the asterisk (*) indicates that the values are contained to the time interval between 15:00 and 
18:00. 

 

 
 Figure 5: LSTM classifier applied to the loss profile of string 15 in January (TOP: 3D 

Perspective View of Surface Plot, BOTTOM: Top-down View of 3D Surface Plot) 
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Probability Interval Sum of Standard Error 
in kW 

Timestamp 
Count 

Sum of Standard Error 
in kW * 

Timestamp 
Count* 

0.0-0.1 0.0 0 0.0 0 
0.1-0.2 0.0 0 0.0 0 
0.2-0.3 0.0 0 0.0 0 
0.3-0.4 49.3 33 28.7 26 
0.4-0.5 13.0 20 11.7 18 
0.5-0.6 9.2 22 7.6 18 
0.6-0.7 12.6 104 4.5 31 
0.7-0.8 -116.8 1411 -50.5 374 
0.8-0.9 -507.1 746 -46.8 88 
0.9-1.0 -509.9 20 -6.7 3 

Table 2: Total power per probability of Class 0 interval for string 15 in January 

As with the previous models, all the timestamps classified as partially shaded, in this case, with 
a probability of class 0 below 0.5, before 15:00, are guaranteed to be false positives. According 
to this model, the assessed partial shading losses between 15:00 and 18:00, and with a 
probability of class 0 of 0.5, or below, were 40.4𝑘𝑘. 

5. Validation and Results 
5.1. K-Means-based Models Results 
Despite the K-means algorithm not being stochastic, initialising the K cluster centres is 
random, introducing stochasticity into the process. As such, the results of 20 runs of this 
program were recorded and studied to understand its behavior. This program randomly 
attributes a number to the clusters, which means, for example, that what is shown as cluster 
6, in Figure 5, could have any number between 1 and 6 in a different run. To align the cluster 
numbers between the 20 runs, it was necessary to apply the Kuhn–Munkres algorithm, also 
known as the Hungarian method (Kuhn 2010). The mentioned method is a combinatorial 
optimisation algorithm that solves assignment problems. 
It provides a way to consistently label clusters across multiple runs of the K-means algorithm, 
enabling meaningful comparisons and evaluations of clustering stability and performance. 
The distribution over time of timestamps, with label 1, can be seen in Figure 7: 
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Figure 6: Cluster 1 distribution over time, by model 

Analysing Figure 7 allowed us to easily identify that run 5 had 100 % of the label 1 timestamp 
before 15:00. So, this model could classify timestamps, as partially shaded, in the correct 
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period, in 19 out of 20 runs. An average of 19.7 % of the classified timestamps were false 
positives. Developing this model, as already presented, allowed us to confirm that, for K-
means clustering, it is necessary to input the total number of clusters before the clustering 
occurs. So, a priori trial and error-based estimation is needed. 
5.2. LSTM-based Models Results 
Previously, it was mentioned that the training process is stochastic. This architecture was 
initialised and trained 20 times with the combined dataset from strings 7, 2 and 8, and each 
model was then used to process the data from string 15 in January. Figure 8 illustrates the 
distribution of 558 timestamps between 15:00 and 18:00, with each model's probability values 
represented by density plots. The density plots provide a representation of the distribution of 
probability values. From this figure, it is possible to infer that 3 models out of 20 could classify 
timestamps as partially shaded. Model 1, seen in Figure 6, classified 44 timestamps (40.4 𝑘𝑘𝑘𝑘) 
as partially shaded, whereas Model 2, also seen in Figure 6, classified 11 timestamps 
(14.1 𝑘𝑘𝑘𝑘) as partially shaded and Model 9, again in Figure 6, classified 8 timestamps as 
partially shaded (10.6 𝑘𝑘𝑘𝑘). 
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Figure 7: Probability distribution, by model 

5.3. Model Results Comparison 
On January 15, 2024, the EPC company conducted an experiment between 14:00 and 16:00 to 
assess the impact of shadow growth on panel productivity. The increase in shadow presence 
over the panels during this time frame was noted to have ranged from 1 cm to 10 cm on average. 
Furthermore, the study revealed a 20 % decrease in expected production during this period. 



Machine Learning Algorithm for Assessing Photovoltaic Panels Partial Shading Losses based on Inverter Data 
Tiago Francisco Rodrigues Pires, Armando Luís Sousa Araújo 

U.Porto Journal of Engineering, 11:1 (2025) 130-145 143 

With this reference and having calculated the difference between measured and expected 
power for that period, the results for the models can be seen in Table 3. 

 Total Expected Power 
in kW 

Calculated 
Losses in kW Losses as percentage False 

positives 
Reference N/A N/A 20,0% N/A 
Calculated 301.6 53.1 17.6% N/A 
K-Means 301.6 46.6 15.4% 7 

LSTMModel1 301.6 40.4 13.4% 9 
LSTMModel2 301.6 14.1 4.7% 6 
LSTMModel9 301.6 10.6 3.5% 9 

Table 3: Results for the studied models. False positives are only counted 
 before 15:00 

The K-Means-based model was the closest to the reference values from these results while 
having fewer false positives than the best LSTM Model. It must be noted that, when weighing 
these models, the K-Means-based approach holds all the disadvantages mentioned in Section 
2.1. The LSTM models, on the other hand, do not require previous knowledge of the dataset 
and do not demand choosing a cluster number.  

6. Conclusions 
The main objective of this work was to develop and study ML models capable of assessing 
losses due to partial shading. Two distinct approaches were shown: an unsupervised ML 
approach, based on K-Means clustering, and a supervised ML approach, aided by 
unsupervised ML, based on LSTM Neural Networks. Assessing and attributing these losses to 
this fault can be key to future penalty negotiations in O&M. The models described in this paper 
could draw similarities and differences between the expected and measured power. This 
diagnostic tool might also be valuable for informing all parts involved in the PV power plant 
conception and engineering phases.  The models were shown to have validation errors. The 
biggest challenge for the LSTM models was the lack of labelled data for this case. With more 
data for training purposes, better future results can be achieved, and the validation means 
can be improved. Future work might include finer tuning of hyperparameters through the 
development of parameter optimisation models to improve the current capabilities of this 
system (De Benedetti et al. 2018). It would also be interesting to try new and different neural 
network architectures, such as using an Autoencoder in conjunction with the existing LSTM. 
Additional features, such as the estimation of how the registered partial shading periods affect 
the ageing of the solar cells and calculating the estimated losses in revenue and equipment 
substitution, would also be of interest from a commercial application standpoint. 
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