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A basic combinatorial optimization problem, the Set Covering 
Problem (SCP) finds extensive use in computer science, operations 
research, and logistics, among other domains. The SCP’s goal is to 
determine the smallest number of subsets, or sets, needed to 
cover every element precisely once given a finite set of items and 
a collection of subsets of these elements. Numerous practical uses 
for the SCP exist, such as crew scheduling, truck routing, and 
facility locating. 
This paper focuses on obtaining feasible solutions, applying to the 
obtained solutions constructive heuristics (CH), followed by a 
redundancy elimination procedure to remove unnecessary sets. 
To further optimize the quality of the solution, a local search 
method is also implemented based on the First and Best 
improvement algorithms. Additionally, the Greedy Randomized 
Adaptive Search Procedure (GRASP) and Variable Neighborhood 
Search (VNS) metaheuristics are designed and implemented. Each 
implemented heuristic underwent testing across 42 instances, 
with the average deviation from the optimal solution calculated 
for each instance. The GRASP heuristic demonstrated the most 
favorable performance, achieving a maximum deviation of 2.26% 
from the optimal solution, while the VNS approach yielded a 
maximum deviation of 11.46% from the optimal solution at its 
best. 

1. Introduction

The origins of combinatorial optimization can be traced back to the mid-20th century when
early pioneers established the foundation for this field. Optimization algorithms were
developed to efficiently navigate complex solution spaces, leading to the formulation of
integer programming and the emergence of combinatorial optimization as a distinct discipline.
The recent rise of artificial intelligence has led to the increased use of metaheuristic
approaches, such as neighborhood and population-based algorithms, for solving complex
optimization problems with large solution spaces.

Combinatorial optimization issues are utilized in many engineering domains, such as
parameter setting, process management, and system control. These issues are generally
recognized as NP-hard, highlighting their intrinsic complexity in a variety of engineering
applications  (Hu, 2023) . For problems of modest scale, precise solutions are typically sought
through algorithms like Branch-and-Bound (Radešček, 2021) and Integer Linear Programming
(ILP) (Klocker, 2018). However, these exact methods come with the trade-off of longer
computational times and increased computational resource utilization. As the scale of the
problem grows, a shift is made towards stochastic solutions. These approaches, such as
Genetic Algorithms (Peng, 2020) and Simulated Annealing (Geng, 2021) , provide approximate
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solutions that meet the computational demands within the constraints of the problem's 
scope.  

In Operational Research, the Set Covering Problem (SCP) is a combinatorial problem focused 
on covering all required elements with minimal cost. The SCP has been applied to a wide range 
of industrial applications, such as scheduling, manufacturing, service planning, and location 
problems; among many other applications (Bilal, Galinier, and Guibault 2013). The SCP has a 
set of elements or characteristics E = {E1, E2, E3, ..., Em} that must be met, and a set of subsets 
S = {S1, S2, S3, ..., Sn}. These subsets cover a certain number of elements, e.g. S2 = {C2 , C6 ,C8 ,C10} 
and has an associated cost (w). 

To solve the SCP, a solution that covers all elements from E with minimal cost must be 
obtained, by choosing multiple subsets from S. The general formulation is as follows (Beasley 
and Chu 1996): 

 

aij = {
1 , 𝑖𝑓 𝑒𝑙𝑒𝑚𝑒𝑛𝑡 𝑖 𝑖𝑠 𝑐𝑜𝑣𝑒𝑟𝑒𝑑 𝑏𝑦 𝑠𝑢𝑏𝑠𝑒𝑡 𝑗

0, 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒
 (1) 

 

 

bij = {
1 , 𝑖𝑓 𝑠𝑢𝑏𝑠𝑒𝑡  𝑖 𝑐𝑜𝑣𝑒𝑟𝑠 𝑒𝑙𝑒𝑚𝑒𝑛𝑡 𝑗

0, 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒
 (2) 

 

 

xi = {
1, 𝑖𝑓 𝑠𝑢𝑏𝑠𝑒𝑡 𝑖 𝑖𝑠 𝑠𝑒𝑙𝑒𝑐𝑡𝑒𝑑

0, 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒
 (3) 

 

 

The goal is to minimize the overall cost: 

 

𝑚𝑖𝑛𝑖𝑚𝑖𝑧𝑒 ∑ 𝑤𝑖 ∗ 𝑥𝑖

𝑛

𝑖=1

 (4) 

 

Subject to: 

 
xi ∈ {0,1} , i = 1,2,3, … , n (5) 

 

 

∑ bij, 𝑗 = 1,2,3, … , 𝑛

𝑛

𝑖=1

 (6) 

 

, where n refers to the total number of subsets; m is the total number of elements; and wi 

represents the cost of each subset i. 

Three different Constructive Heuristics (CH) and a redundancy elimination algorithm are 
addressed in this paper, providing feasible solutions for this problem. Followed by these 
procedures, a Local Search is conducted to further improve the obtained initial solution, 
generating a neighborhood by performing one-by-one swap moves. Two main approaches are 



Utilizing Heuristics and Metaheuristics for Solving the Set Covering Problem  
Lourenço Sousa de Pinho 

U.Porto Journal of Engineering, 10:3 (2024) 1-22 3 

addressed in this procedure, the First Improvement and the Best Improvement algorithms. 
The second part of this paper focuses on the metaheuristics, namely the Greedy Randomized 
Adaptive Search Procedure (GRASP) and Variable Neighborhood Descent metaheuristics. 
Parameter tuning was conducted, obtaining two different test environments, and simulating 
different applicational constraints. 

This article is structured as follows: Section 2 describes related work in the context of previous 
research of the Set Covering Problem, Section 3 presents the solution representation used 
throughout this work; Section 4 describes the CHs implemented; Section 5 details the 
redundancy elimination procedure; Section 6 describes the Local Search procedure; Section 7 
presents the GRASP metaheuristic, giving special attention to its details and results; Section 8 
details the implementation, attributes and results of the Variable Neighborhood Search; 
Section 9 and Section 10 offer some final remarks and discuss future work that can be done 
to improve the overall obtained solution. 

2. Related Work 

The Set Covering Problem is a challenging problem in combinatorial optimization that has 
practical applications in decision-making. The text is free from grammatical errors, spelling 
mistakes, and punctuation errors. No changes in content have been made. It involves selecting 
a subset of sets to cover a universal set, with the goal of minimizing the total cost of the chosen 
sets. The language used is clear, objective, and value-neutral, with a formal register and 
precise word choice. The text adheres to conventional structure and formatting, with a logical 
flow of information and causal connections between statements. The Set Covering Problem 
has been widely used in various fields such as logistics, resource allocation, and network 
design, leading to numerous research studies. This section explores the extensive body of 
related work that aims to enhance the understanding, algorithms, and solution methodologies 
for the SCP. By examining previous research, we seek to clarify the development of methods, 
the range of issues addressed, and the ongoing pursuit of creative solutions to address the 
inherent complexities of the SCP. 

The Greedy Randomized Adaptive Search Procedure (GRASP) and Variable Neighborhood 
Search (VNS) emerge as prominent metaheuristic algorithms for tackling the SCP, each 
offering distinct advantages in addressing this NP-hard optimization challenge. GRASP exhibits 
flexibility and adaptability by combining a greedy construction phase with iterative local 
search, producing high-quality solutions across various problem instances. Noteworthy recent 
contributions include the work by Reyes et al. (Reyes, 2021), Souza et al. (Souza, 2022), and 
Niu et al. (Niu, 2023);  showcasing GRASP's effectiveness in solving large-scale SCP instances. 
On the other hand, VNS excels in diversifying the search space, efficiently escaping local 
optima through dynamic neighborhood changes. Notable references include the studies by 
Colombo et al. (Colombo, 2015), Barhdadi et al. (Barhdadi, 2023), and Kalatzantonakis 
(Kalatzantonakis, 2023); highlighting VNS's prowess in addressing complex optimization 
challenges. The choice between GRASP and VNS is often dictated by the specific characteristics 
of the SCP instance at hand, with both algorithms providing valuable tools for addressing this 
combinatorial optimization problem. 

The inherent flexibility of metaheuristics lies in their capacity to be seamlessly integrated, 
leading to hybrid solutions tailored to specific optimization problems, thereby enhancing the 
efficiency of solution finding. Machado et al. (Machado, 2021) contribute to this trend by 
proposing a hybrid metaheuristic that combines the Variable Neighborhood Search (VNS) and 
Greedy Randomized Adaptive Search Procedure (GRASP) for addressing the challenging 



Utilizing Heuristics and Metaheuristics for Solving the Set Covering Problem  
Lourenço Sousa de Pinho 

U.Porto Journal of Engineering, 10:3 (2024) 1-22 4 

Capacitated Vehicle Routing Problem (CVRP), demonstrating competitive performance 
against other state-of-the-art approaches.  

In the scope of the present study, the focus will be on developing and evaluating the 
standalone VNS and GRASP metaheuristics across 42 instances of the problem. This deliberate 
choice enables a meticulous and intricate analysis of the individual performance of VNS and 
GRASP, laying the groundwork for a comprehensive understanding of their efficacy and 
potential synergy in addressing complex optimization challenges. 

3. Solution Representation 

The selection of an appropriate solution representation is paramount to the overall 
effectiveness of the algorithm implementation. Thus, the chosen representation must strike a 
balance between ease of comprehension and straightforward code implementation. In this 
context, vectors emerged as the preferred form of solution representation. Each heuristic or 
metaheuristic solution is encapsulated in two key components: 

• Solution: A vector of integers, where the values at each index correspond to the 
subsets that were chosen during the algorithm's execution. 

• Frequency Vector: A vector of integers with size m, indicating how many times each 
element has been encountered throughout the solution. This vectorized representation not 
only facilitates a clear understanding of the solution space but also ensures simplicity in 
coding, essential for the seamless execution of the algorithm. 

A comprehensive performance evaluation strategy is used to assess the effectiveness of the 
algorithms developed. For each problem instance, the deviation from the optimal solution is 
meticulously calculated and then averaged over all instances. This approach streamlines the 
overall objective of the study, which is to minimize the overall average deviation, 
encapsulated in the objective function. Figure 1 depicts the implementation pipeline of the 
algorithms developed, providing a visual representation that facilitates a nuanced 
understanding of the intricate processes undertaken to produce these results. This visual aid 
serves to help unravel the sequential steps and methodologies involved in algorithmic 
development, thereby contributing to a deeper understanding of the research undertaken. 

 

Figure 1: Overall implementation pipeline 

4. Constructive Heuristics 

CHs can be defined as methods that from an empty solution obtain complete solutions, by 
iteratively adding sets to it until all elements are covered, i.e., until the solution is feasible. 
CHs can be implemented and defined in two ways: deterministic or stochastic. Every new 
iteration of the algorithm, a new solution is obtained, and a deterministic approach would 
always obtain the same values. Adding randomness to it avoids constructing the same solution 
repeatedly, obtaining a stochastic approach (Bilal, Galinier, and Guibault 2013). 
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Three CHs were implemented and tested for the SCP, with two of them being deterministic 
and one of them being stochastic. The CHs developed are detailed in the following 
subsections.  

4.1. CH1 

The first constructive heuristic is purely greedy, by iteratively going through all elements and 
only choosing the subset with the lowest cost that covers that element. Figure 2 presents the 
pseudo-code for this CH. Dispatching Rule: 

 
min(Subset Cost) (7) 

 

 

 

 

 

 

 

 

 

 

 

 
Figure 2: CH1 Algorithm 

4.2. CH2  

CH2 considers a ratio between the number of unmet elements in a set and the respective cost 
of that set. Instead of being purely greedy, CH2 now considers which number of elements 
need to be covered and only selects the sets that cover it instead of choosing all the sets with 
lower costs until reaching a solution. Figure 3 depicts this implementation. 

Dispatching Rule:  

 

max(
Number of unmet elements

𝐶𝑜𝑠𝑡
) (8) 
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Figure 3: CH2 Algorithm 

4.3. CH3 

CH3 considers a neighborhood size and searches within that neighborhood for sets with the 
lowest cost, randomly selects between those sets, and then adds that set to the solution. This 
process is run iteratively until a feasible solution is acquired. Figure 4 depicts this 
implementation. 

 

 

 

 

 

 

 

 

 

 
 

 

Figure 4: CH3 Algorithm 
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This subsection is dedicated to examining and presenting the outcomes achieved for each of 
the Constructive Heuristics (CHs). A rigorous evaluation was conducted by testing and 
comparing the performance of each implemented Constructive Heuristic across all 42 
instances. For each instance, the deviation to the optimal solution was calculated, and the 
final assessment involved averaging these deviations for each respective CH. This 
comprehensive analysis aims to provide insights into the relative effectiveness and 
consistency of the Constructive Heuristics, shedding light on their performance across a 
diverse set of instances.  

 
Constructive 

Heuristic 
Average 

Deviation 
# Mathematical 

Operations 

CH1  22.38% 𝑛𝑐ℎ𝑎𝑟𝑠  

CH2 16.11% 𝑛𝑐ℎ𝑎𝑟𝑠  

CH3 32.00% 𝑛𝑐ℎ𝑎𝑟𝑠  

   
Table 1: Results of all CHs 

Looking at Table 1, it is clear that CH2 emerges as the most proficient Constructive Heuristic 
(CH) with an exceptional average deviation of 16.11%. Conversely, CH3 shows a comparatively 
higher average deviation, positioning it as the least effective CH with a deviation of 32.00%. 
Notably, the computational complexity of these CHs is remarkably consistent, characterized 
by a number of mathematical operations equivalent to 𝑛𝑐ℎ𝑎𝑟𝑠. Here, 𝑛𝑐ℎ𝑎𝑟𝑠 denotes the 
number of elements in each instance, implying a harmonized computational load across the 
different heuristics. This uniformity in computational effort underlines the fair comparison of 
the CH performances and highlights the distinct impact of their inherent strategies on the 
achieved average deviations.  

During the results analysis, the algorithms were executed without employing parallel 
computation, deliberately subjecting them to the most challenging conditions to 
comprehensively evaluate their performance. It is essential to note that, if the application 
necessitates it, the algorithms discussed in all subsequent sections can incorporate parallel 
computation to expedite execution times. 

5. Redundancy Elimination 

While all constructive heuristics successfully produce feasible solutions, the possibility of 
redundant sets remaining in the final solution can adversely affect its overall score. To address 
this concern, a redundancy elimination mechanism is carefully designed and implemented, as 
shown in Figure 5. 
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            Figure 5: Redundancy Elimination Algorithm 

 

This process involves iteratively traversing the obtained solution and systematically removing 
subsets while ensuring the continued feasibility of the solution. The redundancy elimination 
mechanism critically assesses the continued feasibility of the solution after each subset 
removal by identifying the redundancy of the removed set. This iterative and careful approach 
ensures the optimization of the final solution by eliminating redundancies without 
compromising its feasibility. The Redundancy Elimination function has a total of 𝑺𝒐𝒍𝒖𝒕𝒊𝒐𝒏𝒔𝒊𝒛𝒆 
mathematical operations, where the 𝑺𝒐𝒍𝒖𝒕𝒊𝒐𝒏𝒔𝒊𝒛𝒆 is the number of subsets that compose the 
solution and as such makes the algorithm perform similarly for all CHs, in terms of 
computational load. 

5.1. Results Discussion 

This subsection aims to discuss the results obtained by applying the redundancy elimination 
procedure to each of the CHs detailed in Section 3.  

5.1.1. CH1 

 For CH1, the effects of Redundancy Elimination are noticeable as the number of sets and the 
cost of the solution is reduced drastically, as observed in Figure 6. 

 
Figure 6: Effects of Redundancy Elimination on CH1 
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 Average 
Original Sets 

Average Sets 
After RE 

Average 
Deviation 

Total 
Elapsed Time 

# Mathematical 
Operations 

CH1 + RE 74,64 64,88 11,59% 10,6 ms 𝑆𝑖𝑧𝑒𝑠𝑜𝑙𝑢𝑡𝑖𝑜𝑛 

      
Table 2: Improvements made on CH1, by redundancy elimination 

 

These results are summarized in Table 2. As observed from the figures above, every instance 
profited from the elimination of redundant sets. 

5.1.2. CH2 

Regarding CH2, this constructive heuristic also benefits from redundancy elimination, and 
much like CH1, every instance benefits from this procedure. The results of the solutions 
computed by CH2 are presented in Table 3. When comparing the results between CH1 and 
CH2, CH2 has a smaller execution time, while also possessing a smaller percentage deviation 
from the optimal solution. In Figure 7, we can observe the set and cost difference respectively. 

 

 Average 
Original Sets 

Average Sets 
After RE 

Average 
Deviation 

Total 
Elapsed Time 

# Mathematical 
Operations 

CH2 + RE 64,59 60,14 12,22% 9,4 ms 𝑆𝑖𝑧𝑒𝑠𝑜𝑙𝑢𝑡𝑖𝑜𝑛 

      
Table 3: Improvements made on CH2, by redundancy elimination 

 

Figure 7: Effects of Redundancy Elimination on CH2 

5.1.3. CH3 

Finally, CH3 also benefits from the elimination of redundant sets. As CH3 has a stochastic 
approach the improvements are smaller than the other two CHs. However, every instance is 
still improved, although slightly, as shown in Figure 8 and Table 4. Both computational times 
and average deviation are higher when compared to CH1 and CH2. 
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 Average 
Original Sets 

Average Sets 
After RE 

Average 
Deviation 

Total 
Elapsed Time 

# Mathematical 
Operations 

CH3 + RE 75,36 64,43 19,23% 9,37 ms 𝑆𝑖𝑧𝑒𝑠𝑜𝑙𝑢𝑡𝑖𝑜𝑛 

      
Table 4: Improvements made on CH3, by redundancy elimination 

 
Figure 8: Effects of Redundancy Elimination on CH3 

6. Improvement Heuristics 

With the objective of escaping local optima obtained from the constructive heuristics, after 
redundancy elimination, a local search method is implemented. Also known as Improvement 
Heuristics, these algorithms take a feasible, complete solution and compare it to another 
complete solution. These solutions that are compared to each other are referred to as 
neighbors throughout this work and can be obtained by making small changes to the solution. 

Two different approaches were considered when implementing this local search: Best 
Improvement (BI) and First Improvement (FI). The first consists in generating a neighborhood 
and iterating through all possible neighbors, saving the best result among them. In contrast, 
the FI approach starts with a random neighbor and as soon as a better solution is found, the 
algorithm stops. 

The implemented algorithms used neighbors obtained with one-by-one swap moves. Each set 
of the solution is replaced and removed, iteratively, with one of the other sets, starting with 
the cheapest ones. The pseudo-code for these algorithms is presented in Figure 9. Both 
approaches are executed infinitely until no better solution is found. 

6.1. Best Improvement 

The best improvement local search was tested on all constructive heuristics, before and after 
redundancy elimination. The obtained results are presented in Table 5. 

By observing the table, it can be concluded that CH1 and CH3, being the less constrictive 
heuristics allow for more redundant sets within the solution. This is not only observed in 
Section 4 but also in the neighborhood size, since more sets are present, the local search will 
search through a bigger solution space, resulting in bigger execution times. This also leads to 
better results when comparing results before and after redundancy is removed. With CH2 
being the most restrictive out of all 3 constructive heuristics, not as many redundant sets are 
added, leading to a small difference between average deviations before and after redundancy 
elimination, as well as smaller computational times. 
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The observation reveals a consistency in the number of mathematical operations across all 
Constructive Heuristics (CHs) with and without redundancy elimination. This uniformity stems 
from the application of the Best Improvement strategy, which systematically identifies the 
optimal neighbor for the initial solution. Consequently, the number of mathematical 
operations remains remarkably similar and is characterized by Sizesolution. No. Subsets. Here, 
Sizesolution denotes the number of subsets comprising the initial solution, while No. Subsets 
signifies the quantity of subsets present in each instance. The table below shows a significant 
variation in the average elapsed time, which depends on the use of the redundancy 
elimination procedure. This difference arises because the procedure reduces the size of the 
solution by eliminating redundant sets. As a result, the smaller solution size leads to a 
reduction in the overall number of mathematical operations in the algorithm. This efficient 
computational load leads to faster execution times, resulting in improved efficiency and more 
favourable outcomes. 

 Average 
Improvement 

(in relation to CH) 

Average  
Deviation 

Average 
Elapsed Time 

Total 
Elapsed Time 

# Mathematical 
Operations 

CH1 14,74% 8,11% 11,35s 476,70s 𝑆𝑖𝑧𝑒𝑠𝑜𝑙𝑢𝑡𝑖𝑜𝑛  . 𝑁𝑜. 𝑆𝑢𝑏𝑠𝑒𝑡𝑠 

CH1 + RE 4,34% 7,25% 2,25s 94,60s 𝑆𝑖𝑧𝑒𝑠𝑜𝑙𝑢𝑡𝑖𝑜𝑛 . 𝑁𝑜. 𝑆𝑢𝑏𝑠𝑒𝑡𝑠 

CH2 7,08% 9,46% 4,62s 194,23s 𝑆𝑖𝑧𝑒𝑠𝑜𝑙𝑢𝑡𝑖𝑜𝑛 . 𝑁𝑜. 𝑆𝑢𝑏𝑠𝑒𝑡𝑠 

CH2+RE 2,82% 9,40% 1,19s  49,81s 𝑆𝑖𝑧𝑒𝑠𝑜𝑙𝑢𝑡𝑖𝑜𝑛 . 𝑁𝑜. 𝑆𝑢𝑏𝑠𝑒𝑡𝑠 

CH3 18,42% 15,66% 12,06s 506,53s 𝑆𝑖𝑧𝑒𝑠𝑜𝑙𝑢𝑡𝑖𝑜𝑛 . 𝑁𝑜. 𝑆𝑢𝑏𝑠𝑒𝑡𝑠 

CH3 + RE 5,75% 14,39% 2,39s 100,23s 𝑆𝑖𝑧𝑒𝑠𝑜𝑙𝑢𝑡𝑖𝑜𝑛 . 𝑁𝑜. 𝑆𝑢𝑏𝑠𝑒𝑡𝑠 

      
 

Table 5: Best Improvement Results when applied to all CHs, before and after 
redundancy elimination 

6.2. First Improvement 

The algorithm underwent multiple iterations to ensure the acquisition of reliable solutions 
due to the stochastic nature introduced by the First Improvement approach. The computed 
results are presented in Table 6, which shows a consistent decrease in computational times 
compared to the Best Improvement approach. This can be attributed to the variation in the 
number of mathematical operations, a phenomenon intricately tied to the use of redundancy 
elimination. When redundancy elimination is not performed, the algorithm easily identifies 
better solutions based on Size_{solution}. However, incorporating redundancy elimination 
presents a challenge for the First Improvement method. The absence of redundant sets makes 
it difficult to search for improvements, resulting in longer computational times. The stochastic 
nature of the adopted approach is highlighted by an anomaly in CH2 with redundancy 
elimination, where elapsed time significantly surpasses other cases. 

 Average 
Improvement 

(in relation to CH) 

Average  
Deviation 

Average 
Elapsed Time 

Total 
Elapsed Time 

# Mathematical 
Operations 

CH1 11,26% 11,59% 0,52s 21,96s 𝑆𝑖𝑧𝑒𝑠𝑜𝑙𝑢𝑡𝑖𝑜𝑛   

CH1 + RE 2,36% 9,24% 9,56s 401,43s 𝑆𝑖𝑧𝑒𝑠𝑜𝑙𝑢𝑡𝑖𝑜𝑛 . 𝑁𝑜. 𝑆𝑢𝑏𝑠𝑒𝑡𝑠 

CH2 4,32% 12,22% 0,52s 21,67s 𝑆𝑖𝑧𝑒𝑠𝑜𝑙𝑢𝑡𝑖𝑜𝑛  

CH2+RE 1,42% 10,80% 60,89s  2557,45s 𝑆𝑖𝑧𝑒𝑠𝑜𝑙𝑢𝑡𝑖𝑜𝑛 . 𝑁𝑜. 𝑆𝑢𝑏𝑠𝑒𝑡𝑠 

CH3 14,16% 19,91% 0,58s 24,50s 𝑆𝑖𝑧𝑒𝑠𝑜𝑙𝑢𝑡𝑖𝑜𝑛  

CH3 + RE 3,04% 17,09% 5,24s 220,19s 𝑆𝑖𝑧𝑒𝑠𝑜𝑙𝑢𝑡𝑖𝑜𝑛 . 𝑁𝑜. 𝑆𝑢𝑏𝑠𝑒𝑡𝑠 

      
Table 6: First Improvement Results when applied to all CHs, before and after 

redundancy elimination 
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Figure 9: Local Search Algorithms 

7. GRASP 

In this section, another approach that was taken is described. The Greedy Randomized 
Adaptive Search Procedure (GRASP) is a metaheuristic for combinatorial problems, with each 
iteration being comprised of two phases: construction and local search. The construction 
phase builds a feasible random solution, whose neighborhood is investigated until a local 
minimum is found during the local search phase (Resende and Ribeiro 1998). This kind of 
metaheuristic has a wide range of applications, for example, school timetabling problems, and 
path-relinking for job shop scheduling among many others (Festa and Resende 2011). 

The first step of the GRASP procedure consists of generating a random feasible solution and 
introducing a stochastic element to the solution building. This process is done iteratively 
generating multiple feasible solutions. As these solutions are not optimal, a local search 
algorithm is then applied to the obtained solution to seek out a local optimum. The returned 
result is the best-computed solution among all the iterations (Guimarães, Santos, and Almada-
Lobo 2011). The process behind the GRASP procedure is described in Figure 10. As detailed in 
the figure, this procedure only needs two input parameters; the maximum number of 
iterations the algorithm will be allowed to run, and a seed. The latter is user-defined to adjust 
the amount of greediness for the construction phase. 
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7.1. Construction Phase 

For each iteration of the procedure, a new solution is computed by adding new sets until it 
becomes feasible. The heuristic implemented for this phase is the same as CH3, with a 
stochastic element introduced; the seed parameter (α ϵ [0,1]). Instead of choosing the most 
cost-effective subset that meets a certain element, a larger pool is considered. The index 
position which indicates the size of said pool is given by α∗N. Figure 10 provides a visual 
context for the impact of the seed parameter on the stochastic element introduced in CH3, 
and Figure 11 provides the pseudo-code for the resulting heuristic. Depending on the α 
parameter, the randomness of the solution can be controlled. Setting α to 0 would make the 
heuristic completely greedy, such as CH1, where the least costly set would always be selected. 
Setting α to 1, however, would make the solution completely random, which causes a negative 
impact on the solution obtained. 

As such, a middle-ground between both values is imperative for an effective construction 
phase of the GRASP procedure. 

 

 

 

 

 

 

 

 

Figure 10: GRASP Algorithm 

 

 
 

 

 

 

 

 

 

 

 

 
 

Figure 11: For an N-sized vector containing all the sets that cover a certain 
characteristic, ordered by cost (Wn), α defines the index position that limits the size 

of the pool from which the set to be inserted is considered. 
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Figure 
12: GRASP 

Constructive Heuristic Algorithm 

7.2. Local Search Phase 

Upon obtaining a feasible solution, a local search is conducted in order to escape local 
minima. Generating neighbors has direct impact on the running times between iterations, 
simple neighborhoods are often chosen (Guimarães, Santos, and Almada-Lobo 2011). 

The neighbor is created by doing one-by-one swap moves, as described in Section 5. The 
approach taken for the local search was a slight modification of the First Improvement 
Heuristic, and as such the pseudo-code is presented in Figure 9. 

7.3. Results Discussion 

The two input parameters of the GRASP procedures have certain constraints that must meet 
the application’s requirements. For example, if time is a constraint, the number of iterations 
should be lower; if precision, however, is required the local search space should be larger 
consequently increasing computing times. 

Since the instances had a different number of subsets the same seed could produce different 
amounts of randomness to each solution, thus producing unsatisfactory results. As such, an 
adaptive seed was created, which is updated according to the size of the data of each instance. 
Through experimentation, α ∈ {0.1; 0.05; 0.01. 

This subsection aims to experiment with different number of iterations and adaptive seed, for 
all instances, to assess the impact such parameters have on the final solution. 

 Average 
Deviation 

Min. Avg. 
Deviation 

Max. Avg. 
Deviation 

Average 
Elapsed 

Time 

Total  
Elapsed 

Time 

# Mathematical Operations 

50 
Iterations 

2,93% 0,0% 10,14% 1m47s 75m24s 50 ∗ (𝑆𝑖𝑧𝑒𝑠𝑜𝑙𝑢𝑡𝑖𝑜𝑛 ∗ 𝑛𝑐ℎ𝑎𝑟𝑠) 
 

100 
Iterations 

2,55% 0,0% 6,58% 3m18s 138m40s 100 ∗ (𝑆𝑖𝑧𝑒𝑠𝑜𝑙𝑢𝑡𝑖𝑜𝑛 ∗ 𝑛𝑐ℎ𝑎𝑟𝑠) 
 

250 
Iterations 

2,26% 0,0% 6,33% 8m24s 352m52s 250 ∗ (𝑆𝑖𝑧𝑒𝑠𝑜𝑙𝑢𝑡𝑖𝑜𝑛 ∗ 𝑛𝑐ℎ𝑎𝑟𝑠) 
 

       
Table 7: Summary of GRASP, with adaptive seed 
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By observing Table 7, one is able to conclude that an increasing number of iterations leads to 
a better convergence of the solution, however, one must take into account the computational 
times this process entails, with the computational times having a proportional relation to the 
number of iterations. For each test case, a minimum average deviation of 0% was obtained, 
meaning that for at least one instance the optimal solution was achieved. For 50 and 100 
iterations, two optimal solutions were found, and for 250 iterations five optimal solutions 
were found. 

Computational times are intricately linked to the algorithm's mathematical operations, 
represented by Iterations ∗  (Sizesolution ∗ nchars). Here, Iterations denote the number of 
iterations the algorithm undergoes, 𝑆𝑖𝑧𝑒𝑠𝑜𝑙𝑢𝑡𝑖𝑜𝑛 signifies the size of the initial solution, and 
𝑛𝑐ℎ𝑎𝑟𝑠 represents the number of elements in each instance. The numerous multiplications 
involved in the procedure contribute to a notable increase in overall computational time. 

The ability of a metaheuristic, like the GRASP, to let the algorithm jump to inferior answers is 
one of its main advantages. This expands the scope of the local search and makes a greater 
range of workable options possible. The iterative leaps between solutions are shown in Figure 
13. The optimal solution among its neighbors is retained when the number of iterations hits 
the stopping requirement. 

The Set Covering Problem’s GRASP implementation produced, at best, average answers with 
2.26% variance from the best-known solution. It may be inferred from the data analysis that 
more iterations will likely cause the algorithm to converge to even better results. Running 
times were inversely correlated with the number of iterations, resulting in twice as long runs 
for a 0.3% increase in accuracy. For most real-world applications, a margin of improvement 
this little is not worth taking into account. 

The solution size will not vary throughout that iteration because the local search phase used 
by the GRASP is based on swap moves of equal size. This implies that an optimal solution may 
never be found and, as a result, the average deviation will never reach 0%. An alternative 
method of creating neighbors might involve introducing an “x” number of sets and doing 
redundancy elimination. 

This section ends with a comparison between the instance deviation and the average deviation 
across all instances in Figure 14.  

 

 

 

 

 

 

  

 

 
 

Figure 13: GRASP procedure for first instance 
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Figure 14: GRASP instance deviations (left: 50 iterations, middle: 100 iterations, 

right: 250 iterations) 

8. VNS 

Variable Neighborhood Search (VNS) is a metaheuristic optimization algorithm used to solve 
combinatorial optimization problems, such as production planning or scheduling problems 
(Almada-Lobo, Oliveira, and Carravilla 2008). 

VNS is a flexible and effective technique that can be used to solve a variety of optimization 
issues with good results. It is especially helpful in situations where there is a wide search space 
and it is challenging to optimize the goal function (Hansen and Mladenovic 2003). 

The VNS utilizes a neighborhood structure, generated at random, defined by doing swaps 
between sets utilized of the initial solution. Afterward, the algorithm is run iteratively, and 
until a better feasible solution than the initial solution is found, the neighborhood search space 
keeps increasing until a certain threshold, which is defined by the user. 

8.1. Construction Phase 

For any given solution, a new surrounding solution is computed throughout each cycle. This 
new neighbor is obtained by adding k randomly chosen subsets from the original solution that 
were not used before. The selection process is carried out proportionately to the k-valued 
neighborhood search space’s size. Then, redundant subsets are removed in order to select a 
feasible adjacent solution at random. Figure 15 outlines the procedure for generating this 
random neighbor. 
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Figure 15: VNS Random Neighbor Algorithm  

 

8.2. VNS Algorithm 

The initial solution (shown as S and E), the maximum number of iterations (shown as 
MAX_ITER) required for the algorithm to execute, and the maximum size of the neighborhood 
search space (shown as K_max) are the inputs that the VNS method gets. The neighborhood 
search space (k) is first initialized by the algorithm to a value of 1. 

During each iteration of the algorithm, a fresh random neighbor is created using the current 
neighborhood search space (k) as its parameter. The score of this random neighbor is 
computed and compared to the score of the current best solution. If the score of the random 
neighbor is better than that of the current best solution, the new solution replaces the one 
initially obtained. Otherwise, the new solution remains the same as the best current solution, 
and the neighborhood search space is expanded. The algorithm for this procedure is shown in 
Figure 16. 
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Figure 16: VNS Algorithm  

8.3. Results Discussion 

To obtain the following results, the VNS algorithm was run with variable iterations (iterations 
∈ {50, 100, 250, 500 ,1000}) and a fixed maximum neighborhood size of 5 (K_max = 5). This 
subsection aims to demonstrate the results, along with the effects that iterations have on the 
final solution. 

It can be seen from examining Table 8 that a larger number of iterations leads to a somewhat 
better convergence of the answer. However, as computing times are strongly correlated with 
the number of iterations, it is imperative to take this process’s computational time into 
account. The computing periods in this instance are rather short, in contrast to the GRASP 
method, enabling a trade-off between computational time and obtaining somewhat better 
results. The efficiency in computational times observed in this procedure can be attributed to 
the inherent mathematical operations. The calculation of mathematical operations is 
determined by multiplying the number of algorithm iterations with the sum of the maximum 
allowable neighborhood size and the size of the best-obtained solution. 

This approach adds k subsets to the neighborhood search space according to the 
neighborhood space parameter k and then removes redundancy. The significantly larger 
average deviations from the optimal solution are explained by the use of this method. 
Consequently, it is apparent that a new strategy is needed to significantly lower the deviations 
that were achieved. 

Figure 17 demonstrate how the VNS algorithm develops over 50, 250, and 1000 iterations. In 
the meantime, for these same iterations, Figure 18 showcases the instance deviation in 
relation to the global deviation. Notably, it is clear from Figure 17 that the VNS approach 
allows for a more thorough investigation of the solution space, taking into account both sub-
optimal and better options. 
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Figure 18 demonstrates how little the deviations change between iterations. Nevertheless, 
the deviation of each instance tends to converge toward the global deviation as the number 
of iterations rises. It’s also important to note that in certain cases, there are consistent 
differences between cases. This is explained by the fact that fewer subsets are needed to 
obtain a solution, which increases the difficulty of the algorithm in computing a better answer. 

 

 Average 
Deviation 

Min. Avg. 
Deviation 

Max. Avg. 
Deviation 

Average 
Elapsed Time 

Total  
Elapsed 

Time 

# Mathematical Operations 

50 Iterations 11,84% 2,07% 24,20% 91ms 3,84s 50 ∗ (𝐾𝑚𝑎𝑥 + 𝑆𝑖𝑧𝑒𝑠𝑜𝑙𝑢𝑡𝑖𝑜𝑛) 
 

100 
Iterations 

11,78% 2,07% 24,20% 184ms 7,71s 100 ∗ (𝐾𝑚𝑎𝑥 + 𝑆𝑖𝑧𝑒𝑠𝑜𝑙𝑢𝑡𝑖𝑜𝑛) 
 

250 
Iterations 

11,73% 2,07% 24,20% 461ms 19,34s 250 ∗ (𝐾𝑚𝑎𝑥 + 𝑆𝑖𝑧𝑒𝑠𝑜𝑙𝑢𝑡𝑖𝑜𝑛) 
 

500 
Iterations 

11,77% 2,07% 24,20% 922ms 38,74s 500 ∗ (𝐾𝑚𝑎𝑥 + 𝑆𝑖𝑧𝑒𝑠𝑜𝑙𝑢𝑡𝑖𝑜𝑛) 
 

1000 
Iterations 

11,46% 2,07% 24,20% 1,91s 1m20s 1000 ∗ (𝐾𝑚𝑎𝑥 + 𝑆𝑖𝑧𝑒𝑠𝑜𝑙𝑢𝑡𝑖𝑜𝑛) 
 

       
Table 8: Summary of VNS (K_max = 5) 

 

 

 

 

 

 

 

 

 

 

 

 
Figure 17: VNS behavior for first instance  

 

 

 

 

 

 

 

 

 

 
Figure 18: VNS instance deviations (left: 50 iterations, middle: 250 iterations, right: 

1000 iterations)   
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9. Conclusions 

This paper examines the use of heuristics and metaheuristics for solving combinatorial 
problems, specifically the Set Covering problem. It highlights their effectiveness in finding 
feasible solutions, although not necessarily optimal ones. The study presents three 
Constructive Heuristics that use deterministic and stochastic dispatching rules, taking into 
account the possibility of redundant sets in feasible solutions. Additionally, a Redundancy 
Elimination process is proposed and has been shown to successfully address this issue. The 
local search comprises the Best Improvement (BI) and First Improvement (FI) heuristics. BI 
outperforms FI due to its comprehensive neighborhood assessment. In the best-case scenario, 
the average divergence from ideal solutions is 7.25%.  

The study then discusses the implementation of the Greedy Randomized Adaptive Search 
Procedure (GRASP), a metaheuristic with low configuration needs. It showcases an average 
error of 2.26% under optimal conditions within a time limit.  

The Variable Neighborhood Search (VNS) is also explored, providing a broader spectrum of 
neighbors but yielding higher errors (11.46%) compared to GRASP. 

GRASP, while computationally intensive, offers satisfactory results and can be implemented 
in real applications, providing simple and adaptable options along with VNS. 

The main contributions of this paper are: 

• Exploration of Constructive Heuristics using deterministic and stochastic methods, and 
analyzing their results. 

• Implementation of a Redundancy Elimination procedure that successfully improve the 
overall score of the solution, as well as removing redundant sets from the solution. 

• Implementation of Local search heuristics with Best Improvement (BI) outperforming 
First Improvement (FI), achieving 7.25% average deviation. 

• Implementation of a Greedy Randomized Adaptive Search Procedure (GRASP) with low 
configuration needs, yielding 2.26% average error under optimal conditions. 

• Variable Neighborhood Search (VNS) explored, providing a broader spectrum of 
neighbors but resulting in higher errors (11.46%) compared to GRASP. 

10. Future Work 

The Set Covering Problem (SCP) holds extensive practical relevance, necessitating ongoing 
refinements for enhanced solutions. To guide future exploration and implementation, the 
following detailed strategies are proposed: 

• Innovative Neighbor Generation: Investigate diverse methodologies for generating 
neighbors in both local search and Variable Neighborhood Search (VNS) procedures. 
Evaluate their impact on computational times and solution accuracy, aiming for 
more effective and efficient approaches. 

• Parameter Fine-Tuning: Undertake a comprehensive fine-tuning of parameters for 
the Greedy Randomized Adaptive Search Procedure (GRASP) and Variable 
Neighborhood Search (VNS). Tailor these parameters for different application 
scenarios to ensure optimal performance across varied problem instances. 

• Metaheuristic Exploration: Expand the solution framework by introducing 
additional metaheuristic algorithms, such as Simulated Annealing or Tabu Search. 
Rigorously assess the outcomes produced by these metaheuristics to gain nuanced 
insights into their specific effectiveness in addressing the SCP. 
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• Hybridization Strategies: Delve into the potential of hybridization by strategically 
combining multiple metaheuristics or heuristics. Examine how the unique 
advantages of each approach synergize to yield superior outcomes, shedding light 
on the ways these hybrid approaches can substantially enhance overall solution 
quality. 

• Parallel and Distributed Computing: Investigate the practical application of parallel 
and distributed computing techniques to expedite the solution process. Provide a 
detailed assessment of the feasibility of handling larger instances more efficiently, 
elucidating the potential benefits of parallelism specifically in the context of SCP. 

These targeted strategies for future research not only highlight key areas for exploration but 
also offer specific insights into the practical implementation of these recommended works. 
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