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 Electromechanical Impedance Spectroscopy (EMIS) is a 
promising Structural Health Monitoring (SHM) method 
which allows the early detection of defects by analyzing the 
structure response to an AC electrical signal swept through a 
range of high frequencies. In this work, EMIS measurements 
of pristine and damaged adhesive joints were performed, 
and features were extracted from the experimental 
measurements. These features were inputted to a k-Nearest 
Neighbors (kNN) model for damage detection. Results show 
that only one type of features is enough for damage 
detection. Furthermore, the use of the Manhattan Distance 
in the kNN enables a better classification. 

 

1. Introduction 

Structural adhesive bonding has been adopted in the manufacture of vehicular structures, 
since other conventional mechanical connections require the addition material, increasing 
weight and fuel consumption (da Silva et al., 2018). However, adhesives are prone to thermal 
or aging effects (Machado et al., 2018; Brandão et al., 2022), diverse loading conditions (Wei 
et al., 2022; Sousa et al., 2022) and the accidental introduction of contaminants (Brandão et 
al., 2022). These phenomena negatively impact the mechanical performance of structural 
joints, thus requiring adequate damage detection methods, such as Structural Health 
Monitoring (SHM) that employ various sensors and computer algorithms to determine 
information on possible damage foci while the vehicle is in operation (Na et al., 2018; Güemes 
et al., 2020; Tenreiro et al., 2021). 

Electromechanical Impedance Spectroscopy (EMIS) is a Structural Health Monitoring (SHM) 
method that employs the coupled electromechanical behavior of piezoelectric sensors, which 
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can work simultaneously as actuator, converting an electrical signal to mechanical stress, and 
as sensor, converting mechanical stress into an electrical signal. In this manner, the electric 
current, I(𝑗𝜔), changes with excitation frequency, 𝜔, for a specific supply voltage, V, and, 
consequently, the measured electrical impedance, Z(𝑗𝜔), is influenced by the local mechanical 
behavior, thus allowing the detection of voids in structural adhesives through the use of 
algorithms, such as Machine Learning (ML) models (Na et al., 2018; Tenreiro et al., 2021). This 
early detection can, in certain cases, avoid defect propagation or, in an advanced stage, 
failure. 

Since aeronautical structures are some of the most promising applications of this technology, 
which mainly use aluminum components connected by adhesive materials, due to their 
inherent light weight, aluminum single lap joints will be used to test this technology (Abbas et 
al., 2019). The obtained experimental measurements are then used to train a k-Nearest 
Neighbors (kNN) model for void detection. This ML algorithm was used for its simplicity and 
lower computational cost, unlike what occurs with commonly used artificial neural networks 
(Rautela and Bijudas, 2019). 

2. Experimental Details 

2.1. Materials 

The manufactured joints have adherends of Aluminum Al 6082, a commonly used aluminum 
in the aeronautical industry, due to its reduced weight and its relatively high stiffness and 
resistance. 

The structural adhesive selected was the Nagase T-836/R-810, which is produced by Nagase 
ChemteX (Osaka, Japan). It is a modified epoxy adhesive with high resistance, which means it 
is stiff, like normal epoxy adhesives. However, being a modified epoxy, it also has some 
ductility and tenacity. 

To ensure contact between the piezoelectric sensor and the aluminum substrate, another 
adhesive is used, the Plexus MA 422, produced by ITW Performance Polymers (Chicago, 
Illinois, United States of America). This is a two-part methacrylate adhesive, selected due to 
the necessity of having an easy deposition and being able to cure at room temperature, during 
24 hours, with the application of a low pressure load, due to the sensor fragility (Tenreiro et 
al., 2023a). The mechanical properties of both adhesives and the aluminum alloy are shown 
in Table 1 (Tenreiro et al., 2023a). Please note that, as shown in previous work (Tenreiro et al., 
2023a, Tenreiro et al., 2023b), the excited mechanical vibrations are of low amplitudes and 
occur in the elastic domain. 

 

Material E [GPa] υ [–] η [–] ρ [kg m–3] 

Aluminum Al 6082 70.0 0.33 5×10-4 2710 

Nagase T-836/R-810 2.55 0.41 0.1 1200 

Plexus MA 422 0.994 0.31 0.45 960 

Table 1: Mechanical properties of the used materials (Tenreiro et al., 2023a). 

The substrates used to manufacture single lap joints have a length of 97.5mm, a width of 
25mm and a thickness of 2mm, as shown in Figure 1. 

The manufactured single lap joints were instrumented with piezoelectric sensors PRYY + 1119, 
fabricated by PI Ceramics (Lederhose, Germany), to allow the impedance spectrum 
measurements. The piezoelectric sensor mechanical properties are evidenced in Table 2. 



Void detection in structural adhesive joints using a k-Nearest Neighbors model with features from Electromechanical Impedance Spectroscopy 
Pedro A. O. Vilela, A. Francisco G. Tenreiro, António M. F. Mendes Lopes, Lucas F. M. da Silva 

Engineering Manufacturing Letters, 2:1 (2024) 2-13 4 

 
Figure 1: Single Lap Joint Dimensions 

 

Density [
𝐠

𝐜𝐦𝟑] Elastic Compliance Coefficient Coupling Factor 

S11
E  [m2·N–1] S33

E  [m2·N–1] kp kt 

7.80 16.1 × 10-12 20.7 × 10-12 0.62 0.47 

Table 2: Piezoelectric sensor mechanical properties (Tenreiro et al., 2023a). 

2.2. Specimen Manufacturing 

- Substrate Surface Treatment 

To ensure good adhesion in the substrates, superficial treatments are required before 
applying the adhesive. Anodizing has been revealed fundamental in the adhesive joint 
manufacture with aluminum substrates. This process allows to create a thin oxide layer, in a 
controlled manner, also creating a surface with pores and whiskers (da Silva et al., 2018). 

Initially, the substrates are sand blasted, allowing the removal of existing oxide layers and 
impurities in the surface and increasing the rugosity of the surface. To perform the 
anodization, a phosphoric acid aqueous solution, with 10% mass of phosphoric acid was used. 
Following suggested values by the literature, an electric supply with a voltage of 16V was used, 
for 25 minutes, with the lowest electric current possible (ASTM, 2004). Afterwards, the 
surfaces were cleaned using acetone and distilled water, being then left to dry for 30 minutes. 

- Manufacture of Single Lap Joint (SLJ)  

To ensure the creation of a void in the structural adhesive, it is necessary to use a 
Polytetrafluoroethylene (PTFE) infill, glued onto the desired position, so that the adhesive 
does not occupy that volume during the cure process. 

After the joints are placed in the mold, the curing process began with pressure and 
temperature being applied in a hot press. The recommended cure cycle for the adhesive 
requires a curing temperature of 160°C for 3 hours, as illustrated in Figure 2. 

 
Figure 2: Structural adhesive cure cycle. 
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- Instrumentation 

Electrical impedance measurements are performed to detect possible structural dynamic 
behavior changes, thus requiring a connection between the piezoelectric sensor and the 
structure, which is obtained using the Plexus MA 422 adhesive. It is also necessary to 
guarantee a good connection of the copper wires to the piezoelectric sensor. 

The connection of the copper wire to the top of the piezoelectric sensor is obtained through 
a soldering process. However, the connection between the other copper wire to the bottom 
of the piezoelectric sensor is more complicated, due to the necessity of assuring the 
simultaneous contact of the copper wire to the bottom of the piezoelectric sensor and the 
aluminum substrate. For that, a copper wire spiral is made, as shown in Figure 3, and during 
the cure process, a small force is applied to ensure contact between the sensor, the copper 
spiral, and the substrate. 

 

Figure 3: Scheme of the connection of the piezoelectric sensor to the aluminum 
substrate. 

2.3. Impedance Measurements 

To perform impedance measurements of the instrumented joints, the negative and positive 
poles of the impedance analyzer were connected to the copper wires, creating an electric 
circuit. A supply voltage of 1V was defined. 

With the goal of evaluating the influence of boundary conditions in the spectra, 
measurements were performed in two different setups. In the first condition, a joint is free 
and without any boundary conditions, being only supported by the table. In the second 
condition, shims and clamps are used to fix the joint. The setups are shown in Figure 4. 

 
Figure 4: Boundary conditions for impedance measurements. 

Furthermore, for each joint and for each condition, three distinct measurements were 
performed, varying the frequency range and the scale, allowing one to better analyze different 
parts of the spectrum. Each measurement contains a total of 801 points, which is the 
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maximum number of obtainable sampling points with the impedance analyzer. The 
measurements are listed below: 

• 1kHz to 1MHz with linear scale (801 points); 

• 1kHz to 1MHz with logarithmic scale (801 points); 

• 100kHz to 1MHz with linear scale (801 points); 

 Measurements obtained through the impedance analyzer were saved in .csv files 
containing the 801 sampled frequency points and the respective phase and magnitude values 
of the impedance. A Python script reads these files and uses the phase and magnitude of the 
impedance to calculate the real and imaginary components of the impedance, saving new .csv 
files with this additional information. 

3. Algorithm Description 

3.1. K-Nearest Neighbors (kNN) 

The k-Nearest Neighbors (kNN) is a supervised learning algorithm able to perform either 
classification or regression, depending on the task at hand. In the case of damage detection, 
a classification kNN model is used. This algorithm, based on the analysis of introduced 
features, will classify each instance, in this case, pristine or defective joint. Figure 5 presents 
a flowchart describing the functioning of the classification algorithm. 

 
Figure 5: kNN algorithm flowchart. 

For this classification task, an integer value, k, must be given, for the algorithm to determine 
the k nearest neighbors, and then classify the instances as the most common class in the k 
nearest neighbors. In this case, of a binary classification, k should be odd, to avoid ties. 
However, when a tie occurs, the classification to one of the two classes is random. 

3.2. Feature Extraction 

Between the various possible features that can be extracted from the spectra to train the 
detection algorithm, the following were selected, with the goal of comparing which of the 
selected feature combination is more effective in damage detection: 

• Frequency of the Re(Z) peaks (n features); 

• Real value of the Re(Z) peaks (n features); 

• Frequency + Real component value of the Re(Z) peaks (2n features); 
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• Frequency + Real component value + Imaginary component value of the Re(Z) 
peaks (3n features); 

In all of the considered options, the number of features depends on the number of extracted 
peaks, n, which will also affect the accuracy of the algorithm. 

Since, during this research, there was only measurements from a total of 54 SLJs (39 with 
defect, which were codified as being of class 0, and 15 pristine, which were codified as being 
of class 1), spectra were joined to obtain a higher number of instances, so that the kNN model 
could be used without underfitting. Here is the list of combinations used: 

• 1kHz to 1MHz Linear (54 instances); 

• 1kHz to 1MHz Logarithmic (54 instances); 

• (1kHz-1MHz-Lin) + (100kHz-1MHz Lin) (54 instances); 

• (1kHz-1MHz Log) + (100kHz-1MHz Lin) (54 instances); 

• (1kHz-1MHz-Lin) + (1kHz-1MHz-Log) + (100kHz-1MHz-Lin) (54 instances); 

 
Figure 6: Noise detected as peaks. 

Once all the spectrum fusions were performed, the first attempt of feature extraction was 
done using the find_peaks function from the SciPy module (Virtanen, 2020). However, noise 
inherent to the measurements was being detected as peaks, as shown in Figure 6, where 
peaks are identified with yellow marks. To remove these incorrectly detected peaks, a peak 
width of at least 2 was required, which was effective and allowed a correct peak detection. 

Next, a peak selection was required, since each spectrum has a different number of detected 
peaks, and all instances should have the same number of features. For that, a criterion to 
select which peaks to keep and which to remove was necessary. It was decided to keep the 
peaks with the highest prominence values. However, one still needed to find an optimal 
number of peaks to keep. 

After analyzing the number of peaks of each instance, it was verified that the spectra with the 
minimum number of peaks was of approximately 30 peaks. Therefore, the number of selected 
had to be lower, to guarantee that the selected peaks had significant prominence values. In 
this manner, all instances have 25 peaks. 
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3.3. Detection Algorithm Results 

To evaluate the influence of each parameter in the accuracy of the detection algorithm, 
default parameters were defined, so that each parameter could be tested separately, keeping 
the remaining parameters with default values, which were: 

• Test_size = 0.2; 

• k = 5; 

• n = 25; 

• Euclidian Distance. 

All comparisons were performed with this baseline case, where a kNN model was trained with 
frequency peaks only, which were extracted from measurements of Fixed SLJs. 

3.4. Influence of boundary conditions 

To ascertain the influence of boundary conditions of the specimens in the results, ten 
iterations of the algorithm were performed, presenting the values of the accuracy in Table 3. 
In Figure 7, a box plot of the accuracy for each boundary condition is presented. 

i 1 2 3 4 5 6 7 8 9 10  

Avg Random_state 13996 21698 29852 15151 64553 19130 63599 14447 40453 65233 

A
cc

u
ra

cy
 

(%
) 

Free 55.56 64.81 64.81 61.11 62.96 68.52 74.07 72.22 62.96 72.22 65.92 

Fixed 75.93 77.78 75.93 85.19 79.63 74.07 81.48 72.22 81.48 66.67 77.04 

Table 3: Influence of boundary conditions in the kNN model accuracy. 

 
Figure 7: Accuracy boxplot for each boundary condition. 

It was detected that the extracted features from spectra of fixed SLJs allowed the kNN model 
to obtain a significantly higher accuracy, when compared with trained kNN models of adhesive 
joints in a free condition. 

3.5. Feature influence 

In this case, all default parameters were considered, and all four possible feature 
combinations were extracted from spectra of SLJs with fixed boundary conditions. For each of 
the possible features, 10 iterations of the detection algorithm were performed, with the 
values of the accuracy being presented in Table 4. A box plot is also presented in Figure 8. 

With the boxplot visualization, it is noticed that the accuracy variation with the selected 
feature is small. Therefore, using the last two options, where a comparatively high number of 
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features is used, no significant gain in accuracy is obtained, and, conversely, the use of 
computational resources has increased. 

i 1 2 3 4 5 6 7 8 9 10  

Avg Random_state 50113 30317 10442 11778 37525 29348 51974 25682 41512 11671 

A
cc

u
ra

cy
 (

%
) 

Freq 70.37 74.07 75.93 72.22 88.89 85.19 77.78 64.81 70.37 74.07 75.37 

Re 77.78 68.52 74.07 70.37 75.93 81.48 77.78 72.22 79.63 68.52 75.18 

Freq + Re 70.37 74.07 75.93 72.22 88.89 85.19 77.78 64.81 70.37 74.07 75.37 

Freq + Re + Im 70.37 75.93 75.93 72.22 88.89 85.19 77.78 64.81 70.37 74.07 75.56 

Table 4: Influence of selected feature in the kNN model accuracy. 

 
Figure 8: Accuracy boxplot for each feature selected. 

 

i 1 2 3 4 5 6 7 8 9 10  

Avg Random_state 61786 15899 2484 55317 46880 83086 52587 47256 22890 59705 

A
cc

u
ra

cy
 

(%
) 

Euclidian 79.63 68.52 83.33 72.22 70.37 77.78 68.52 77.78 70.37 79.63 74.82 

Manhattan 92.59 70.37 75.93 83.33 83.33 83.33 72.22 83.33 83.33 88.89 81.67 

Table 5: Influence of the adopted distance in the kNN model accuracy. 

3.6. Influence of the adopted type of distance for the kNN model 

In this scenario, only two distances - Euclidian and Manhattan distances -are evaluated. For 
each distance, 10 iterations were done, with the obtained accuracy values listed in Table 5, 
and the respective boxplot shown in Figure 9. 
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Figure 9: Accuracy boxplot for each type of distance. 

It was noticed that the accuracy of the kNN model was significantly superior when using the 
Manhattan distance, when compared to the Euclidian distance, which indicates that the 
Manhattan distance is more suitable in kNN damage detection algorithms. 

 
Figure 10: Accuracy variation with value of k. 

3.7. Influence of k value 

To evaluate the influence of k, the number of nearest neighbors for classification, this value 
was changed from 3 to 50, and ten iterations of the detection algorithm were performed. In 
this study, the minimum, median and maximum obtained accuracy were compared. In Figure 
10, a plot of the variation of these parameters with k is shown, and in Figure 11, examples of 
confusion matrixes for k=5 and k=50 are presented. 

 
Figure 11: Confusion matrixes for k=5 and k=50. 

It was expected that, from the representation of the variation of kNN accuracy with the value 
of k, it would be possible to determine a value, or range of values, for k, to maximize the 
accuracy of the algorithm. Furthermore, for higher values of k, a decrease in the accuracy was 
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expected. However, that does not happen because the majority of the SLJs used in this project 
were defective (195 instances of a total of 270 instances, 72%) and, as the value of k increases, 
the algorithm tends to classify most of the instances as defective, as shown in Figure 11, thus 
keeping accuracy values close to the percentage of defective instances, 72%. 

3.8. Influence of the dataset division in train and test subsets 

To evaluate the influence of the database split into train and test subsets, the test size was 
increased from 10% to 30%, with a step of 1%, and, for each value, 10 iterations were made, 
estimating the minimum, median and maximum of the accuracy. In Figure 12, there is a 
representation of the obtained accuracy with the test dataset size. 

 
Figure 12: Accuracy variation with test size. 

It is noticeable that, when a large portion of the dataset becomes part of the test subset, there 
is a decrease in the maximum and median values of the algorithm accuracy, beginning at 22% 
and 20%, respectively. However, the minimum value of accuracy does not follow the same 
pattern. 

4. Conclusions 

Based on the accuracy of the predictions performed by the classification algorithm, it is clear 
that boundary conditions have a significant influence on the results, and that measurements 
with the SLJ fixed are more suitable to the use in damage detection algorithms. 

From the analysis of the obtained accuracy with each feature, none of the feature 
combinations stood out. Therefore, using a higher number of features involves an 
unnecessary use of computational resources, without an increase of classification accuracy. 

It is also possible to conclude that the Manhattan distance is more appropriate to use in kNN 
damage detection, since the average accuracy was 7% higher than the average accuracy of 
the kNN model with the Euclidian distance. 

One was expecting to find a value, or range of values, for k, to optimize the classification 
performance of the kNN model, and an accuracy decrease for higher values of k. However, it 
was not possible to find an optimal value for k, and the accuracy drop did not happen because 
the algorithm tends to classify most of the instances as defective, which corresponds, in a 
similar proportion, to the portion of defective instances in the database. 

By analyzing the variation of accuracy with the test size, it was evidenced that, for values 
above 20%, the maximum and the median of the accuracy start to decrease. As such, it is not 
advisable to have a test subset bigger than 20% of the overall dataset size.  
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